Karim Nader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12189427/publications.pdf Version: 2024-02-01

KADIM NADED

#	Article	IF	CITATIONS
1	Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 2000, 406, 722-726.	27.8	2,270
2	A single standard for memory: the case for reconsolidation. Nature Reviews Neuroscience, 2009, 10, 224-234.	10.2	689
3	Memory traces unbound. Trends in Neurosciences, 2003, 26, 65-72.	8.6	665
4	Cellular and Systems Reconsolidation in the Hippocampus. Neuron, 2002, 36, 527-538.	8.1	632
5	Pharmacological brake-release of mRNA translation enhances cognitive memory. ELife, 2013, 2, e00498.	6.0	541
6	Effect of post-retrieval propranolol on psychophysiologic responding during subsequent script-driven traumatic imagery in post-traumatic stress disorder. Journal of Psychiatric Research, 2008, 42, 503-506.	3.1	518
7	The labile nature of consolidation theory. Nature Reviews Neuroscience, 2000, 1, 216-219.	10.2	500
8	Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 2013, 493, 371-377.	27.8	451
9	elF2α Phosphorylation Bidirectionally Regulates the Switch from Short- to Long-Term Synaptic Plasticity and Memory. Cell, 2007, 129, 195-206.	28.9	437
10	Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends in Neurosciences, 2001, 24, 540-546.	8.6	432
11	An Update on Memory Reconsolidation Updating. Trends in Cognitive Sciences, 2017, 21, 531-545.	7.8	366
12	Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature, 2005, 436, 1166-1170.	27.8	344
13	Characterization of Fear Memory Reconsolidation. Journal of Neuroscience, 2004, 24, 9269-9275.	3.6	341
14	NMDA receptors are critical for unleashing consolidated auditory fear memories. Nature Neuroscience, 2006, 9, 1237-1239.	14.8	289
15	Memory reconsolidation: an update. Annals of the New York Academy of Sciences, 2010, 1191, 27-41.	3.8	288
16	Decay happens: the role of active forgetting in memory. Trends in Cognitive Sciences, 2013, 17, 111-120.	7.8	276
17	Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nature Neuroscience, 2009, 12, 905-912.	14.8	271
18	PKMζ maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nature Neuroscience, 2010, 13, 630-634.	14.8	258

KARIM NADER

#	Article	IF	CITATIONS
19	Activation of extracellular signal-regulated kinase- mitogen-activated protein kinase cascade in the amygdala is required for memory reconsolidation of auditory fear conditioning. European Journal of Neuroscience, 2005, 21, 283-289.	2.6	218
20	A Bridge Over Troubled Water: Reconsolidation as a Link Between Cognitive and Neuroscientific Memory Research Traditions. Annual Review of Psychology, 2010, 61, 141-167.	17.7	208
21	Reconsolidation of Human Memory: Brain Mechanisms and Clinical Relevance. Biological Psychiatry, 2014, 76, 274-280.	1.3	195
22	Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3428-3433.	7.1	184
23	Pharmacogenetic Inhibition of eIF4E-Dependent Mmp9 mRNA Translation Reverses Fragile X Syndrome-like Phenotypes. Cell Reports, 2014, 9, 1742-1755.	6.4	174
24	The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neuroscience and Biobehavioral Reviews, 2012, 36, 1667-1707.	6.1	171
25	Neural Signature of Reconsolidation Impairments by Propranolol in Humans. Biological Psychiatry, 2012, 71, 380-386.	1.3	168
26	Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nature Medicine, 2017, 23, 674-677.	30.7	164
27	Functional Organization of Adult Motor Cortex Is Dependent upon Continued Protein Synthesis. Neuron, 2003, 40, 167-176.	8.1	134
28	AMPA receptor exchange underlies transient memory destabilization on retrieval. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8218-8223.	7.1	131
29	Fear conditioning and LTP in the lateral amygdala are sensitive to the same stimulus contingencies. Nature Neuroscience, 2001, 4, 687-688.	14.8	130
30	Reconsolidation and the Dynamic Nature of Memory. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021782.	5.5	127
31	Deprivation State Switches the Neurobiological Substrates Mediating Opiate Reward in the Ventral Tegmental Area. Journal of Neuroscience, 1997, 17, 383-390.	3.6	119
32	Involvement of the anterior cingulate cortex in formation, consolidation, and reconsolidation of recent and remote contextual fear memory. Learning and Memory, 2012, 19, 449-452.	1.3	117
33	Consolidation and Reconsolidation of Incentive Learning in the Amygdala. Journal of Neuroscience, 2005, 25, 830-835.	3.6	106
34	NEUROBIOLOGICAL CONSTRAINTS ON BEHAVIORAL MODELS OF MOTIVATION. Annual Review of Psychology, 1997, 48, 85-114.	17.7	103
35	De novo mRNA synthesis is required for both consolidation and reconsolidation of fear memories in the amygdala. Learning and Memory, 2008, 15, 747-755.	1.3	98
36	Neurobiology of motivation: Double dissociation of two motivational mechanisms mediating opiate reward in drug-naive versus drug-dependent animals Behavioral Neuroscience, 1992, 106, 798-807.	1.2	96

KARIM NADER

#	Article	IF	CITATIONS
37	Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala. European Journal of Neuroscience, 2006, 24, 249-260.	2.6	95
38	Memory Retrieval Requires Ongoing Protein Synthesis and NMDA Receptor Activity-Mediated AMPA Receptor Trafficking. Journal of Neuroscience, 2015, 35, 2465-2475.	3.6	94
39	Lesions of Periaqueductal Gray Dissociate-Conditioned Freezing From Conditioned Suppression Behavior in Rats. Learning and Memory, 1999, 6, 491-499.	1.3	92
40	Motivational state determines the functional role of the mesolimbic dopamine system in the mediation of opiate reward processes. Behavioural Brain Research, 2002, 129, 17-29.	2.2	90
41	A-kinase anchoring proteins in amygdala are involved in auditory fear memory. Nature Neuroscience, 2002, 5, 837-838.	14.8	84
42	Enhancement of fear memory by retrieval through reconsolidation. ELife, 2014, 3, e02736.	6.0	84
43	Re-recording human memories. Nature, 2003, 425, 571-572.	27.8	78
44	Systemic mifepristone blocks reconsolidation of cue-conditioned fear; Propranolol prevents this effect Behavioral Neuroscience, 2011, 125, 632-638.	1.2	77
45	Systems Reconsolidation Reveals a Selective Role for the Anterior Cingulate Cortex in Generalized Contextual Fear Memory Expression. Neuropsychopharmacology, 2015, 40, 480-487.	5.4	75
46	Storage or retrieval deficit: The yin and yang of amnesia. Learning and Memory, 2009, 16, 224-230.	1.3	74
47	elF2α controls memory consolidation via excitatory and somatostatin neurons. Nature, 2020, 586, 412-416.	27.8	74
48	A Two-Separate-Motivational-Systems Hypothesis of Opioid Addiction. Pharmacology Biochemistry and Behavior, 1998, 59, 1-17.	2.9	73
49	PKMζ maintains 1â€day―and 6â€dayâ€old longâ€ŧerm object location but not object identity memory in dorsa hippocampus. Hippocampus, 2010, 20, 691-695.	 1.9	68
50	Learning and reconsolidation implicate different synaptic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4798-4803.	7.1	65
51	Control of Synaptic Plasticity and Memory via Suppression of Poly(A)-Binding Protein. Neuron, 2013, 78, 298-311.	8.1	65
52	Fading in. Learning and Memory, 2006, 13, 530-535.	1.3	60
53	Preclinical Evaluation of Reconsolidation Blockade by Clonidine as a Potential Novel Treatment for Posttraumatic Stress Disorder. Neuropsychopharmacology, 2012, 37, 2789-2796.	5.4	60
54	GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term potentiation: possible mechanisms for forgetting of short- and long-term memories. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130141.	4.0	60

KARIM NADER

#	Article	IF	CITATIONS
55	Neurobiology of withdrawal motivation: Evidence for two separate aversive effects produced in morphine-naive versus morphine-dependent rats by both naloxone and spontaneous withdrawal Behavioral Neuroscience, 1995, 109, 91-105.	1.2	56
56	Memory Reconsolidation. Current Topics in Behavioral Neurosciences, 2016, 37, 151-176.	1.7	55
57	Periodically reactivated context memory retains its precision and dependence on the hippocampus. Hippocampus, 2012, 22, 1092-1095.	1.9	54
58	Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor eIF4E Binding Protein 2. Journal of Neuroscience, 2015, 35, 11125-11132.	3.6	48
59	Evidence for the persistence of contextual fear memories following immediate extinction. European Journal of Neuroscience, 2010, 31, 1303-1311.	2.6	47
60	Memory as a new therapeutic target. Dialogues in Clinical Neuroscience, 2013, 15, 475-486.	3.7	45
61	Metyrapone Administration Reduces the Strength of an Emotional Memory Trace in a Long-Lasting Manner. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1221-E1227.	3.6	41
62	β-Adrenergic blockade during reactivation reduces the subjective feeling of remembering associated with emotional episodic memories. Biological Psychology, 2013, 92, 227-232.	2.2	40
63	Neuroleptics block high- but not low-dose heroin place preferences: Further evidence for a two-system model of motivation Behavioral Neuroscience, 1994, 108, 1128-1138.	1.2	39
64	Limits on lability: Boundaries of reconsolidation and the relationship to metaplasticity. Neurobiology of Learning and Memory, 2018, 154, 78-86.	1.9	39
65	The maintenance of longâ€ŧerm memory in the hippocampus depends on the interaction between <i>N</i> â€ethylmaleimideâ€sensitive factor and GluA2. Hippocampus, 2014, 24, 1112-1119.	1.9	32
66	Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation. ELife, 2020, 9, .	6.0	32
67	Response to Alberini: right answer, wrong question. Trends in Neurosciences, 2005, 28, 346-347.	8.6	31
68	Impairments to Consolidation, Reconsolidation, and Long-Term Memory Maintenance Lead to Memory Erasure. Annual Review of Neuroscience, 2020, 43, 297-314.	10.7	30
69	Dorsal hippocampus is necessary for novel learning but sufficient for subsequent similar learning. Hippocampus, 2012, 22, 2157-2170.	1.9	27
70	Clonidine antagonizes the aversive effects of opiate withdrawal and the rewarding effects of morphine only in opiate withdrawn rats Behavioral Neuroscience, 1996, 110, 389-400.	1.2	24
71	A single standard for memory; the case for reconsolidation. Debates in Neuroscience, 2007, 1, 2-16.	1.7	19
72	Altered Human Memory Modification in the Presence of Normal Consolidation. Cerebral Cortex, 2016, 26, 3828-3837.	2.9	19

Karim Nader

#	Article	IF	CITATIONS
73	Differential role of the anterior and intralaminar/lateral thalamic nuclei in systems consolidation and reconsolidation. Brain Structure and Function, 2018, 223, 63-76.	2.3	19
74	The Xâ€linked inhibitor of apoptosis regulates longâ€term depression and learning rate. FASEB Journal, 2016, 30, 3083-3090.	0.5	17
75	Cortico-hippocampal Schemas Enable NMDAR-Independent Fear Conditioning in Rats. Current Biology, 2018, 28, 2900-2909.e5.	3.9	16
76	The Discovery of Memory Reconsolidation. , 2013, , 1-13.		14
77	The Dynamic Nature of Memory. , 2013, , 15-41.		13
78	Amyloid Beta Secreted during Consolidation Prevents Memory Malleability. Current Biology, 2020, 30, 1934-1940.e4.	3.9	13
79	Response to Arshavsky: Challenging the old views. Trends in Neurosciences, 2003, 26, 466-468.	8.6	8
80	On the Temporary Nature of Disruption of Fear-Potentiated Startle Following PKMζ Inhibition in the Amygdale. Frontiers in Behavioral Neuroscience, 2011, 5, 29.	2.0	7
81	A molecular mechanism governing memory precision. Nature Medicine, 2018, 24, 390-391.	30.7	7
82	Memory Destabilization and Reconsolidation Dynamically Regulate the PKMζ Maintenance Mechanism. Journal of Neuroscience, 2021, 41, 4880-4888.	3.6	7
83	Reconsolidation and the Dynamic Nature of Memory. , 2016, , 1-20.		4
84	Emotional Memory. Handbook of Experimental Pharmacology, 2015, 228, 249-270.	1.8	3
85	Memory Traces Unbound. ChemInform, 2003, 34, no.	0.0	1
86	Consolidation and Reconsolidation. , 2014, , 1-5.		1
87	The role of the lateral nucleus of the amygdala in auditory fear conditioning. , 0, , 299-325.		0
88	Reconsolidating perceptual skills. Nature Human Behaviour, 2018, 2, 450-451.	12.0	0