Hong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1218918/publications.pdf

Version: 2024-02-01

46 8,474 32 44 papers citations h-index g-index

50 50 50 50 11095

docs citations

all docs

times ranked

citing authors

#	Article	IF	CITATIONS
1	Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 2006, 441, 475-482.	27.8	1,217
2	Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell, 2003, 4, 209-221.	16.8	982
3	PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature, 2006, 441, 518-522.	27.8	767
4	Negative Regulation of Neural Stem/Progenitor Cell Proliferation by the <i>Pten</i> Tumor Suppressor Gene in Vivo. Science, 2001, 294, 2186-2189.	12.6	761
5	PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell, 2003, 3, 117-130.	16.8	472
6	Cell Autonomous Role of PTEN in Regulating Castration-Resistant Prostate Cancer Growth. Cancer Cell, 2011, 19, 792-804.	16.8	449
7	<i>Pten</i> Loss and RAS/MAPK Activation Cooperate to Promote EMT and Metastasis Initiated from Prostate Cancer Stem/Progenitor Cells. Cancer Research, 2012, 72, 1878-1889.	0.9	421
8	Cre/loxP-mediated inactivation of the murinePten tumor suppressor gene. Genesis, 2002, 32, 148-149.	1.6	352
9	Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1480-1485.	7.1	302
10	PTEN negatively regulates neural stem cell self-renewal by modulating G _O -G ₁ cell cycle entry. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 111-116.	7.1	281
11	<i>Pten</i> Deletion in Adult Neural Stem/Progenitor Cells Enhances Constitutive Neurogenesis. Journal of Neuroscience, 2009, 29, 1874-1886.	3.6	245
12	Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 2008, 453, 529-533.	27.8	223
13	Tracking and Functional Characterization of Epithelial–Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Research, 2015, 75, 2749-2759.	0.9	186
14	Linâ^'Sca-1+CD49fhigh Stem/Progenitors Are Tumor-Initiating Cells in the <i>Pten</i> Null Prostate Cancer Model. Cancer Research, 2009, 69, 8555-8562.	0.9	175
15	Murine Cell Lines Derived from <i>Pten</i> Null Prostate Cancer Show the Critical Role of PTEN in Hormone Refractory Prostate Cancer Development. Cancer Research, 2007, 67, 6083-6091.	0.9	158
16	Essential Role of AKT-1/Protein Kinase Bα in PTEN-Controlled Tumorigenesis. Molecular and Cellular Biology, 2002, 22, 3842-3851.	2.3	136
17	Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14459-14464.	7.1	133
18	Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13205-13210.	7.1	110

#	Article	IF	CITATIONS
19	<i>Pten</i> Null Prostate Epithelium Promotes Localized Myeloid-Derived Suppressor Cell Expansion and Immune Suppression during Tumor Initiation and Progression. Molecular and Cellular Biology, 2014, 34, 2017-2028.	2.3	107
20	PTEN opposes negative selection and enables oncogenic transformation of pre-B cells. Nature Medicine, 2016, 22, 379-387.	30.7	94
21	PTEN deletion in Bergmann glia leads to premature differentiation and affects laminar organization. Development (Cambridge), 2005, 132, 3281-3291.	2.5	93
22	Identification of CD166 as a Surface Marker for Enriching Prostate Stem/Progenitor and Cancer Initiating Cells. PLoS ONE, 2012, 7, e42564.	2.5	91
23	Expression of GRP78, Master Regulator of the Unfolded Protein Response, Increases Chemoresistance in Pancreatic Ductal Adenocarcinoma. Molecular Cancer Therapeutics, 2016, 15, 1043-1052.	4.1	85
24	Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Molecular Systems Biology, 2017, 13, 914.	7.2	73
25	TRIM21 and PHLDA3 negatively regulate the crosstalk between the PI3K/AKT pathway and PPP metabolism. Nature Communications, 2020, 11, 1880.	12.8	65
26	Suppression of leukemia development caused by PTEN loss. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1409-1414.	7.1	64
27	PTEN regulates cilia through Dishevelled. Nature Communications, 2015, 6, 8388.	12.8	55
28	A Unified Nomenclature and Amino Acid Numbering for Human PTEN. Science Signaling, 2014, 7, pe15.	3.6	50
29	Targeting the MYC and PI3K Pathways Eliminates Leukemia-Initiating Cells in T-cell Acute Lymphoblastic Leukemia. Cancer Research, 2014, 74, 7048-7059.	0.9	46
30	Nitroxoline induces apoptosis and slows glioma growth in vivo. Neuro-Oncology, 2015, 17, 53-62.	1.2	41
31	Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-Pl3Kα/ 12 Πtreatment. Nature Communications, 2022, 13, 182.	12.8	40
32	Pten loss in the bone marrow leads to G-CSF–mediated HSC mobilization. Journal of Experimental Medicine, 2013, 210, 2337-2349.	8.5	36
33	T-ALL leukemia stem cell 'stemness' is epigenetically controlled by the master regulator SPI1. ELife, 2018, 7, .	6.0	32
34	3D genome alterations associated with dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia. Nature Communications, 2021, 12, 3708.	12.8	24
35	Loss of Pten Causes Tumor Initiation Following Differentiation of Murine Pluripotent Stem Cells Due to Failed Repression of Nanog. PLoS ONE, 2011, 6, e16478.	2.5	16
36	Comprehensive adipocytic and neurogenic tissue microarray analysis of NY-ESO-1 expression - a promising immunotherapy target in malignant peripheral nerve sheath tumor and liposarcoma. Oncotarget, 2016, 7, 72860-72867.	1.8	15

#	Article	IF	Citations
37	PTEN in Regulating Hematopoiesis and Leukemogenesis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036244.	6.2	12
38	Methods for PTEN in Stem Cells and Cancer Stem Cells. Methods in Molecular Biology, 2016, 1388, 233-285.	0.9	11
39	Determining PTEN Functional Status by Network Component Deduced Transcription Factor Activities. PLoS ONE, 2012, 7, e31053.	2.5	10
40	The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma. Molecular Cancer Research, 2015, 13, 339-347.	3.4	10
41	Mammalian non-CG methylations are conserved and cell-type specific and may have been involved in the evolution of transposon elements. Scientific Reports, 2016, 6, 32207.	3.3	8
42	Integrated genomic analyses identify high-risk factors and actionable targets in T-cell acute lymphoblastic leukemia. Blood Science, 2022, 4, 16-28.	0.9	8
43	Cotargeting the Cell-Intrinsic and Microenvironment Pathways of Prostate Cancer by PI3Kα/β/δ Inhibitor BAY1082439. Molecular Cancer Therapeutics, 2018, 17, 2091-2099.	4.1	7
44	Computational characterization of domainâ€segregated 3D chromatin structure and segmented DNA methylation status in carcinogenesis. Molecular Oncology, 2022, 16, 699-716.	4.6	7
45	CAPTURING SIGNAL ANOMALIES OF HUMAN PROSTATE CANCER INTO MOUSE MODELS. , 2005, , 393-421.		1
46	Targeting Metabolism in Liposarcomas. FASEB Journal, 2012, 26, 551.6.	0.5	0