Mehdi Ashjaee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12187816/publications.pdf

Version: 2024-02-01

89 2,316 24 44
papers citations h-index g-index

89 89 89 1805
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Investigating the effect of injection rate on the capture efficiency of nanoparticles in different geometries of stenosed vessel. Journal of Magnetism and Magnetic Materials, 2022, 544, 168665.	2.3	3
2	Design, dynamic simulation, and optimal size selection of a hybrid solar/wind and battery-based system for off-grid energy supply. Renewable Energy, 2022, 187, 1082-1099.	8.9	18
3	Sustainability analysis and optimization of innovative geothermal-driven energy storage system for green production of H2, NH3, and pure O2. International Journal of Hydrogen Energy, 2022, 47, 26156-26177.	7.1	7
4	Thermal and Fluid-Flow Characteristics of Silver-Water Nanofluid in a Metal-Foam Filled Channel. Heat Transfer Engineering, 2021, 42, 1827-1845.	1.9	2
5	Continuous power generation through a novel solar/geothermal chimney system: Technical/cost analyses and multi-objective particle swarm optimization. Journal of Cleaner Production, 2021, 283, 124666.	9.3	35
6	On-demand heat transfer augmentation using magnetically triggered ferrofluid containing eco-friendly treated CoFe2O4/rGO. Powder Technology, 2021, 378, 468-486.	4.2	11
7	Experimental investigation on thermo-physical properties and heat transfer characteristics of green synthesized highly stable CoFe2O4/rGO nanofluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125923.	4.7	18
8	4E analysis and tri-objective optimization of a triple-pressure combined cycle power plant withÂcombustion chamber steam injection to control NOx emission. Journal of Thermal Analysis and Calorimetry, 2021, 145, 1317-1333.	3.6	15
9	Different nanofluids effect on bubble characteristics at the isothermal bubble column. Canadian Journal of Chemical Engineering, 2021, 99, .	1.7	3
10	Investigating the effect of wearing glasses on the human eyes' temperature distribution in different ambient conditions. Journal of Thermal Biology, 2021, 99, 102971.	2.5	7
11	Novel hybrid thermal management for Li-ion batteries with nanofluid cooling in the presence of alternating magnetic field: An experimental study. Case Studies in Thermal Engineering, 2021, 28, 101539.	5.7	33
12	Experimental design for estimation of the distribution of the convective heat transfer coefficient for a bubbly impinging jet. Journal of Thermal Analysis and Calorimetry, 2020, 140, 439-456.	3.6	6
13	Investigation on trajectories and capture of magnetic drug carrier nanoparticles after injection into a direct vessel. Journal of Magnetism and Magnetic Materials, 2020, 497, 166065.	2.3	21
14	Dynamic feasibility assessment and 3E analysis of a smart building energy system integrated with hybrid photovoltaic-thermal panels and energy storage. Sustainable Energy Technologies and Assessments, 2020, 42, 100835.	2.7	20
15	Lithium-ion battery thermal management system with Al2O3/AgO/CuO nanofluids and phase change material. Applied Thermal Engineering, 2020, 180, 115840.	6.0	96
16	Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries. Applied Thermal Engineering, 2020, 178, 115543.	6.0	84
17	Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1703-1715.	3.6	69
18	Experimental investigation of the effects of passivated aluminum nanoparticles on butane flame structure. Experimental Thermal and Fluid Science, 2019, 100, 33-48.	2.7	3

#	Article	lF	Citations
19	Experimental investigation on heat transfer of MgO nanofluid in tubes partially filled with metal foam. Powder Technology, 2019, 354, 734-742.	4.2	25
20	A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection. International Journal of Thermal Sciences, 2019, 141, 47-61.	4.9	133
21	Experimental Investigation of Thermal Conductivity and Viscosity of SiO ₂ /Multiwalled Carbon Nanotube Hybrid Nanofluids. Journal of Nanoscience and Nanotechnology, 2019, 19, 3398-3407.	0.9	18
22	Experimental investigation on premixed flame of H2/CO in a slot burner using the Mach-Zehnder interferometry. Optics and Laser Technology, 2019, 115, 140-148.	4.6	13
23	Effect of different frequency functions on ferrofluid FHD flow. Journal of Magnetism and Magnetic Materials, 2019, 480, 112-131.	2.3	8
24	Experimental investigation on heat transfer characteristics of partially premixed round methane-air impinging flame jet using Mach-Zehnder interferometry. International Journal of Thermal Sciences, 2019, 137, 601-615.	4.9	10
25	Dynamic measurement of ferrofluid thermal conductivity under an external magnetic field. Heat and Mass Transfer, 2019, 55, 1583-1592.	2.1	6
26	Experimental investigations on the flame structure and temperature field of landfill gas in impinging slot burners. Energy, 2019, 170, 507-520.	8.8	10
27	Numerical investigation of temperature increment effect on bubble dynamics in stagnant water and Al ₂ O ₃ nanofluid column. Particulate Science and Technology, 2019, 37, 292-302.	2.1	2
28	Effect of orifice shape on bubble formation mechanism. Meccanica, 2018, 53, 2461-2483.	2.0	12
29	Experimental investigation of heat transfer and pressure drop of alumina–water nano-fluid in a porous miniature heat sink. Experimental Heat Transfer, 2018, 31, 495-512.	3.2	19
30	Enhanced power generation through integrated renewable energy plants: Solar chimney and waste-to-energy. Energy Conversion and Management, 2018, 166, 48-63.	9.2	74
31	Combined experimental-numerical investigation on the structure of methane/landfill gas flame using PIV. Experimental Thermal and Fluid Science, 2018, 94, 23-33.	2.7	7
32	An experimental and numerical study on the combustion and flame characteristics of hydrogen in intersecting slot burners. International Journal of Hydrogen Energy, 2018, 43, 3034-3049.	7.1	8
33	Experimental investigation on temperature field and heat transfer distribution of a slot burner methane/air flame impinging on a curved surface. Applied Thermal Engineering, 2018, 129, 761-771.	6.0	22
34	Thermal and hydrodynamic performances of MHD ferrofluid flow inside a porous channel. Experimental Thermal and Fluid Science, 2018, 90, 1-13.	2.7	20
35	Temperature field investigation of hydrogen/air and syngas/air axisymmetric laminar flames using Mach–Zehnder interferometry. Applied Optics, 2018, 57, 5057.	1.8	7
36	Energy, exergy and exergoeconomic (3E) analyses and multi-objective optimization of a solar and geothermal based integrated energy system. Applied Thermal Engineering, 2018, 143, 1011-1022.	6.0	116

#	Article	IF	Citations
37	Multi-criteria optimization and comparative performance analysis of a power plant fed by municipal solid waste using a gasifier or digester. Energy Conversion and Management, 2018, 171, 863-878.	9.2	62
38	Thermo-economic analysis of transcritical CO2 cycles with bounded and unbounded reheats in low-temperature heat recovery applications. Energy, 2017, 133, 676-690.	8.8	11
39	Experimental Measurement of Laminar Burning Velocity and Flammability Limits of Landfill Gas at Atmospheric and Elevated Pressures. Energy & Energy & 1, 31, 3196-3205.	5.1	18
40	A novel numerical approach for investigation of the gas bubble characteristics in stagnant liquid using Young-Laplace equation. Chemical Engineering Science, 2017, 173, 37-48.	3.8	17
41	Combustion of Syngas in Intersecting Burners Using the Interferometry Method. Energy & Combustion of Syngas in Intersecting Burners Using the Interferometry Method. Energy & Company Syngas in Intersecting Burners Using the Interferometry Method. Energy & Company Syngas in Intersecting Burners Using the Interferometry Method. Energy & Company Syngas in Intersecting Burners Using the Interferometry Method. Energy & Company Syngas in Intersecting Burners Using the Interferometry Method. Energy & Company Syngas in Intersecting Burners Using the Interferometry Method. Energy & Company Syngas in Intersecting Burners Using the Interferometry Method. Energy & Company Syngas in Intersecting Burners Using the Interferometry Method. Energy & Company Syngas in Intersection Syngas in	5.1	11
42	Thermal energy absorption in a heat sink with elliptical cross section and tangential impinging inlet flow of nanofluid. Experimental Thermal and Fluid Science, 2017, 89, 50-61.	2.7	7
43	Experimental and Numerical Investigation of the Laminar Burning Velocity and Combustion Characteristics of Biogas at High Pressures. Energy & Energy & 14169-14179.	5.1	12
44	Experimental studies on the viscosity of Fe nanoparticles dispersed in ethylene glycol and water mixture. Thermal Science, 2016, 20, 1661-1670.	1.1	7
45	Heat Transfer and Hydrodynamic Performance Analysis of a Miniature Tangential Heat Sink Using Al ₂ O ₃ ꀓH ₂ O Nanofluids. Experimental Heat Transfer, 2016, 29, 536-560.	3.2	20
46	SiO2 nanofluid planar jet impingement cooling on a convex heated plate. Heat and Mass Transfer, 2016, 52, 2735-2746.	2.1	6
47	Experimental Investigation of Heat Transfer Coefficient from the Impingement of a Slot Jet Using Conjugate Gradient Method with Adjoint Equation. Experimental Heat Transfer, 2016, 29, 657-672.	3.2	7
48	Experimental and numerical study on heat transfer characteristics of various geometrical arrangement of impinging jet arrays. International Journal of Thermal Sciences, 2016, 102, 26-38.	4.9	15
49	Effect of SiO2 nanoparticle size on initiation and intensity of bubble formation in a water pump. Experimental Thermal and Fluid Science, 2016, 72, 40-46.	2.7	9
50	Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field. International Journal of Thermal Sciences, 2016, 99, 113-124.	4.9	105
51	Experimental investigation on the effect of nanofluid on the thermal performance of symmetric sintered U shaped heat pipe. Heat and Mass Transfer, 2016, 52, 1255-1264.	2.1	7
52	Experimental study of a laminar premixed LFG/air flame in a slot burner using Mach-Zehnder interferometry. Thermal Science, 2016, 20, 1649-1660.	1.1	1
53	Slot jet impingement cooling of a concave surface in an annulus. Experimental Thermal and Fluid Science, 2015, 68, 300-309.	2.7	15
54	Thermo-economic optimization of low-grade waste heat recovery inÂYazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle. Energy, 2015, 86, 74-84.	8.8	37

#	Article	IF	Citations
55	Hydrodynamics and Heat Transfer Characteristics of a Miniature Plate Pin-Fin Heat Sink Utilizing Al2O3–Water and TiO2–Water Nanofluids. Journal of Thermal Science and Engineering Applications, 2015, 7, .	1.5	20
56	Electricity production with low grade heat in thermal power plants by design improvement of a hybrid dry cooling tower and a solar chimney concept. Energy Conversion and Management, 2015, 94, 1-11.	9.2	53
57	Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field. Powder Technology, 2015, 274, 258-267.	4.2	112
58	Experimental investigation on heat transfer and hydrodynamic behavior of magnetite nanofluid flow in a channel with recognition of the best models for transport properties. Experimental Thermal and Fluid Science, 2015, 68, 582-592.	2.7	16
59	Thermal Conductivity of \frac{Fe}_{2} mathrm O_{3} Fe 2 O 3 and $\frac{S}{E}$ Thermal Conductivity of $\frac{A}{E}$ and $\frac{S}{E}$ Thermal Conductivity of Magnetic Nanofluids Under the Influence of Magnetic Field. International Journal of Thermophysics, 2015, 36, 2720-2739.	2.1	48
60	Experimental investigation on thermal conductivity of water based nickel ferrite nanofluids. Advanced Powder Technology, 2015, 26, 1529-1536.	4.1	56
61	Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink. Heat and Mass Transfer, 2015, 51, 953-964.	2.1	54
62	Heat transfer characteristics of laminar slot jet arrays impinging on a constant target surface temperature. Applied Thermal Engineering, 2015, 76, 252-260.	6.0	22
63	Experimental investigation of natural convection in an enclosure with partial partitions at different angles. Thermal Science, 2014, 18, 1133-1144.	1.1	3
64	Experimental and Numerical Study of Mixed and Natural Convection in an Enclosure With a Discrete Heat Source and Ventilation Ports. Heat Transfer Engineering, 2014, 35, 63-73.	1.9	30
65	Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel. Journal of Magnetism and Magnetic Materials, 2014, 362, 80-89.	2.3	95
66	A comprehensive feasibility study of applying solar energy to design a zero energy building for a typical home in Tehran. Energy and Buildings, 2014, 72, 329-339.	6.7	65
67	A Numerical Study on Natural Convention Heat Transfer From a Horizontal Isothermal Cylinder Located Underneath an Adiabatic Ceiling. Heat Transfer Engineering, 2014, 35, 953-962.	1.9	9
68	Experimental investigation on thermal conductivity of MFe2O4 (M=Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochimica Acta, 2014, 598, 59-67.	2.7	63
69	The influence of SiO2 nanoparticles on cavitation initiation and intensity in a centrifugal water pump. Experimental Thermal and Fluid Science, 2014, 55, 71-76.	2.7	11
70	The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept. Renewable Energy, 2013, 51, 465-473.	8.9	62
71	Neuro-Fuzzy Modeling of the Free Convection from Vertical Arrays of Isothermal Cylinders. Journal of Thermophysics and Heat Transfer, 2013, 27, 588-592.	1.6	10
72	Study of mixed convection characteristics of confined planar jet impingement using the direct temperature gradient interferometric method. International Journal of Thermal Sciences, 2013, 71, 205-215.	4.9	13

#	Article	IF	CITATIONS
73	Experimental and Numerical Investigation on Free Convection From a Horizontal Cylinder Located Above an Adiabatic Surface. Heat Transfer Engineering, 2012, 33, 213-224.	1.9	18
74	Study of heat transfer enhancement in a nanofluid-cooled miniature heat sink. International Communications in Heat and Mass Transfer, 2012, 39, 877-884.	5.6	43
75	EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER IN A NOVEL HEAT SINK BY MEANS OF ALUMINA NANOFLUIDS. Heat Transfer Research, 2012, 43, 709-720.	1.6	23
76	Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices and Microstructures, 2012, 51, 247-264.	3.1	90
77	Study of Electrohydrodynamic Micropumping Through Conduction Phenomenon. IEEE Transactions on Industry Applications, 2011, 47, 2224-2234.	4.9	12
78	An investigation on effect of geometrical parameters on spray cone angle and droplet size distribution of a two-fluid atomizer. Journal of Mechanical Science and Technology, 2011, 25, 3047-3052.	1.5	8
79	Analytical Investigation of the Effect of Viscous Dissipation on Couette Flow in a Channel Partially Filled with a Porous Medium. Transport in Porous Media, 2011, 89, 1-13.	2.6	8
80	Effect of flow diverters on free convection heat transfer from a pair of vertical arrays of isothermal cylinders. Experimental Thermal and Fluid Science, 2011, 35, 1398-1408.	2.7	9
81	Effect of flow conditions on spray cone angle of a two-fluid atomizer. Journal of Mechanical Science and Technology, 2011, 25, 365-369.	1.5	13
82	Characterization of thermal field in mixed-convection cooling of a flat plate by an impinging slot jet. , 2010, , .		1
83	Mixed convection cooling of a heated circular cylinder by laminar upward-directed slot jet impingement. Heat and Mass Transfer, 2009, 46, 225-236.	2.1	7
84	Enhancement of Free Convection Heat Transfer from a Vertical Array of Isothermal Cylinders by Flow Diverters. Heat Transfer Engineering, 2009, 30, 197-206.	1.9	7
85	Liquidâ€Liquid Coaxial Swirl Injector Performance Prediction Using General Regression Neural Network. Particle and Particle Systems Characterization, 2008, 25, 454-464.	2.3	0
86	Slot jet impingement heat transfer from an isothermal circular cylinder. , 2008, , .		3
87	Development of an Electrohydrodynamic conduction micropump using PCB/LCP MEMS technology. , 2008, , .		2
88	Experimental investigation of thermal boundary layer thickness effects on corona discharge current with razor-isothermal cylinder geometry. , 2007, , .		0
89	PDA and Neural Network Investigation of Swirl Spray Interaction Phenomena. Particle and Particle Systems Characterization, 2005, 22, 192-206.	2.3	2