Juan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/121875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-pot synthesis of Na+-free Cu-SSZ-13 and its application in the NH3–SCR reaction. Chemical Communications, 2021, 57, 4898-4901.	4.1	3
2	Embryonic zeolite-assisted synthesis of SSZ-13 with superior efficiency and their excellent catalytic performance. Journal of Materials Chemistry A, 2021, 9, 15238-15245.	10.3	17
3	X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. Journal of Controlled Release, 2021, 332, 1-9.	9.9	46
4	A stage-specific cell-manipulation platform for inducing endothelialization on demand. National Science Review, 2020, 7, 629-643.	9.5	38
5	Nanomaterials for Combinational Radio–Immuno Oncotherapy. Advanced Functional Materials, 2020, 30, 1910676.	14.9	45
6	Thermalâ€Disrupting Interface Mitigates Intercellular Cohesion Loss for Accurate Topical Antibacterial Therapy. Advanced Materials, 2020, 32, e1907030.	21.0	75
7	Graphene oxide encapsulated by mesoporous silica for intelligent anticorrosive coating: studies on release models and self-healing ability. Dalton Transactions, 2019, 48, 13064-13073.	3.3	23
8	Novel nitrogen doped carbon dots enhancing the anticorrosive performance of waterborne epoxy coatings. Nanoscale Advances, 2019, 1, 3443-3451.	4.6	18
9	Selfâ€Unfolding Flexible Microelectrode Arrays Based on Shape Memory Polymers. Advanced Materials Technologies, 2019, 4, 1900566.	5.8	46
10	Facile synthesis of intelligent nanocomposites as encapsulation for materials protection. Materials Chemistry Frontiers, 2019, 3, 321-330.	5.9	26
11	Near-Infrared Light-Driven Controllable Motions of Gold-Hollow-Microcone Array. ACS Applied Materials & Interfaces, 2019, 11, 15927-15935.	8.0	19
12	Shapeâ€Programmable Electronics: Selfâ€Unfolding Flexible Microelectrode Arrays Based on Shape Memory Polymers (Adv. Mater. Technol. 11/2019). Advanced Materials Technologies, 2019, 4, 1970063.	5.8	4
13	Programmed Shapeâ€Morphing Scaffolds Enabling Facile 3D Endothelialization. Advanced Functional Materials, 2018, 28, 1801027.	14.9	125
14	Regulation Effects of Biomimetic Hybrid Scaffolds on Vascular Endothelium Remodeling. ACS Applied Materials & Interfaces, 2018, 10, 23583-23594.	8.0	49
15	Tissue Engineering: Programmed Shapeâ€Morphing Scaffolds Enabling Facile 3D Endothelialization (Adv.) Tj ETÇ	91 <u>1</u> 9.78	4314 rgBT (
16	Tunable shape memory polymer mold for multiple microarray replications. Journal of Materials Chemistry A, 2018, 6, 24748-24755.	10.3	52
17	Trace Water as Prominent Factor to Induce Peptide Selfâ€Assembly: Dynamic Evolution and Governing Interactions in Ionic Liquids. Small, 2017, 13, 1702175.	10.0	49
18	Breath-Taking Patterns: Discontinuous Hydrophilic Regions for Photonic Crystal Beads Assembly and Patterns Revisualization. ACS Applied Materials & Interfaces, 2017, 9, 38117-38124.	8.0	46

Juan Wang

#	Article	IF	CITATIONS
19	Photothermally Triggered Shapeâ€Adaptable 3D Flexible Electronics. Advanced Materials Technologies, 2017, 2, 1700120.	5.8	69
20	3D Printed Photoresponsive Devices Based on Shape Memory Composites. Advanced Materials, 2017, 29, 1701627.	21.0	370
21	Highâ€Performance Photothermal Conversion of Narrowâ€Bandgap Ti ₂ O ₃ Nanoparticles. Advanced Materials, 2017, 29, 1603730.	21.0	766
22	Fabrication of inverse opal beads based on biocompatible and biodegradable polymer. , 2017, , .		1
23	Vapor-condensation-assisted reverse display for anti-counterfeiting applications. , 2016, , .		2
24	Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid. Physical Chemistry Chemical Physics, 2016, 18, 30926-30930.	2.8	15
25	Peptide self-assembly: thermodynamics and kinetics. Chemical Society Reviews, 2016, 45, 5589-5604.	38.1	760
26	Solvothermally Mediated Selfâ€Assembly of Ultralong Peptide Nanobelts Capable of Optical Waveguiding. Small, 2016, 12, 2575-2579.	10.0	50
27	A Bottom-Up Approach to Dual Shape-Memory Effects. Chemistry of Materials, 2015, 27, 2439-2448.	6.7	17