Olga Babourina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12183228/publications.pdf

Version: 2024-02-01

394421 580821 1,655 28 19 25 citations g-index h-index papers 28 28 28 2114 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 2013, 64, 2255-2268.	4.8	226
2	Role of magnesium in alleviation of aluminium toxicity in plants. Journal of Experimental Botany, 2011, 62, 2251-2264.	4.8	195
3	Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 2015, 76, 25-40.	3.4	186
4	Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2433-2438.	7.1	114
5	The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis. Journal of Experimental Botany, 2015, 66, 1865-1875.	4.8	105
6	The cyclic nucleotideâ€gated channel, AtCNGC10, influences salt tolerance in <i>Arabidopsis</i> . Physiologia Plantarum, 2008, 134, 499-507.	5.2	98
7	lonâ€specific mechanisms of osmoregulation in bean mesophyll cells. Journal of Experimental Botany, 2000, 51, 1243-1253.	4.8	94
8	Ammonium and Nitrate Uptake by the Floating Plant Landoltia punctata. Annals of Botany, 2007, 99, 365-370.	2.9	81
9	The cyclic nucleotide-gated channel AtCNGC10 transports Ca ²⁺ and Mg ²⁺ in <i>Arabidopsis</i> Physiologia Plantarum, 2010, 139, 303-12.	5.2	75
10	Low-pH and Aluminum Resistance in Arabidopsis Correlates with High Cytosolic Magnesium Content and Increased Magnesium Uptake by Plant Roots. Plant and Cell Physiology, 2013, 54, 1093-1104.	3.1	69
11	Na ⁺ /H ⁺ antiporter activity of the <i>SOS1</i> gene: lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings. Physiologia Plantarum, 2009, 137, 155-165.	5.2	52
12	Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux. Journal of Experimental Botany, 2010, 61, 3163-3175.	4.8	51
13	Plasma membrane Ca ²⁺ transporters mediate virusâ€induced acquired resistance to oxidative stress. Plant, Cell and Environment, 2011, 34, 406-417.	5.7	41
14	Aluminum-dependent dynamics of ion transport in Arabidopsis: specificity of low pH and aluminum responses. Physiologia Plantarum, 2010, 139, no-no.	5.2	35
15	Uptake of aluminium into Arabidopsis root cells measured by fluorescent lifetime imaging. Annals of Botany, 2009, 104, 189-195.	2.9	33
16	Improved measurements of Na+ fluxes in plants using calixarene-based microelectrodes. Journal of Plant Physiology, 2011, 168, 1045-1051.	3.5	33
17	Spatial distribution of ammonium and nitrate fluxes along roots of wetland plants. Plant Science, 2007, 173, 240-246.	3.6	30
18	Nitrate supply affects ammonium transport in canola roots. Journal of Experimental Botany, 2006, 58, 651-658.	4.8	29

#	Article	IF	CITATIONS
19	Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells. Annals of Botany, 2000, 85, 759-767.	2.9	24
20	Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus–host compatibility in plants. Planta, 2010, 232, 807-815.	3.2	20
21	Reactive Oxygen Species Production in Wheat Roots Is Not Linked with Changes in H ⁺ Fluxes During Acidic and Aluminium Stresses. Plant Signaling and Behavior, 2006, 1, 70-75.	2.4	16
22	Changes in Ion Fluxes During Phototropic Bending of Etiolated Oat Coleoptiles. Annals of Botany, 2004, 94, 187-194.	2.9	10
23	Specificity of Ion Uptake and Homeostasis Maintenance During Acid and Aluminium Stresses. Signaling and Communication in Plants, 2015, , 229-251.	0.7	10
24	Nitrogen Removal from Eutrophicated Water by Aquatic Plants., 2010,, 355-372.		10
25	Ion Transport in Aquatic Plants. , 2010, , 221-238.		7
26	Ion flux interaction with cytoplasmic streaming in branchlets of Chara australis. Journal of Experimental Botany, 2004, 55, 2505-2512.	4.8	6
27	Ca2+Effects on K+Fluxes inArabidopsisSeedlings Exposed to Al3+. Soil Science and Plant Nutrition, 2005, 51, 733-736.	1.9	5
28	Fluorescence Lifetime Imaging (FLIM) Measurements in Salinity Research., 2012, 913, 149-161.		0