Nicholas Eriksson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12181395/publications.pdf

Version: 2024-02-01

172457 377865 11,683 34 29 34 citations h-index g-index papers 35 35 35 20566 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018, 50, 668-681.	21.4	2,224
2	Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genetics, 2014, 46, 989-993.	21.4	1,685
3	Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 2019, 51, 63-75.	21.4	1,594
4	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
5	Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nature Genetics, 2016, 48, 856-866.	21.4	520
6	Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database. PLoS Genetics, 2012, 8, e1002548.	3.5	495
7	Web-Based Genome-Wide Association Study Identifies Two Novel Loci and a Substantial Genetic Component for Parkinson's Disease. PLoS Genetics, 2011, 7, e1002141.	3.5	461
8	Web-Based, Participant-Driven Studies Yield Novel Genetic Associations for Common Traits. PLoS Genetics, 2010, 6, e1000993.	3.5	399
9	Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 2016, 48, 1462-1472.	21.4	284
10	Genome-Wide Analysis Points to Roles for Extracellular Matrix Remodeling, the Visual Cycle, and Neuronal Development in Myopia. PLoS Genetics, 2013, 9, e1003299.	3.5	263
11	GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nature Communications, 2016, 7, 10448.	12.8	263
12	Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics, 2018, 50, 834-848.	21.4	239
13	ShoRAH: estimating the genetic diversity of a mixed sample from next-generation sequencing data. BMC Bioinformatics, 2011, 12, 119.	2.6	235
14	A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nature Genetics, 2013, 45, 907-911.	21.4	232
15	Viral Population Estimation Using Pyrosequencing. PLoS Computational Biology, 2008, 4, e1000074.	3.2	197
16	Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. Journal of Allergy and Clinical Immunology, 2014, 133, 1564-1571.	2.9	195
17	Novel Associations for Hypothyroidism Include Known Autoimmune Risk Loci. PLoS ONE, 2012, 7, e34442.	2.5	128
18	Efficient Replication of over 180 Genetic Associations with Self-Reported Medical Data. PLoS ONE, 2011, 6, e23473.	2.5	117

#	Article	IF	CITATIONS
19	Serum Iron Levels and the Risk of Parkinson Disease: A Mendelian Randomization Study. PLoS Medicine, 2013, 10, e1001462.	8.4	116
20	Comparison of Family History and SNPs for Predicting Risk of Complex Disease. PLoS Genetics, 2012, 8, e1002973.	3.5	102
21	NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiology of Aging, 2015, 36, 1605.e7-1605.e12.	3.1	96
22	Six Novel Susceptibility Loci for Early-Onset Androgenetic Alopecia and Their Unexpected Association with Common Diseases. PLoS Genetics, 2012, 8, e1002746.	3.5	92
23	Replicability and Robustness of Genome-Wide-Association Studies for Behavioral Traits. Psychological Science, 2014, 25, 1975-1986.	3.3	92
24	Androgenetic Alopecia: Identification of Four Genetic Risk Loci and Evidence for the Contribution of WNT Signaling to Its Etiology. Journal of Investigative Dermatology, 2013, 133, 1489-1496.	0.7	83
25	A genetic variant near olfactory receptor genes influences cilantro preference. Flavour, 2012, 1, .	2.3	72
26	Genetic variants associated with motion sickness point to roles for inner ear development, neurological processes and glucose homeostasis. Human Molecular Genetics, 2015, 24, 2700-2708.	2.9	70
27	Genetic variants associated with breast size also influence breast cancer risk. BMC Medical Genetics, 2012, 13, 53.	2.1	65
28	A genome-wide cross-phenotype meta-analysis of the association of blood pressure with migraine. Nature Communications, 2020, 11 , 3368.	12.8	49
29	Reducing Pervasive False-Positive Identical-by-Descent Segments Detected by Large-Scale Pedigree Analysis. Molecular Biology and Evolution, 2014, 31, 2212-2222.	8.9	44
30	Cross-trait analyses with migraine reveal widespread pleiotropy and suggest a vascular component to migraine headache. International Journal of Epidemiology, 2020, 49, 1022-1031.	1.9	34
31	Virtual research visits and direct-to-consumer genetic testing in Parkinson's disease. Digital Health, 2015, 1, 205520761559299.	1.8	22
32	Habitual sleep disturbances and migraine: a Mendelian randomization study. Annals of Clinical and Translational Neurology, 2020, 7, 2370-2380.	3.7	18
33	Self-report data as a tool for subtype identification in genetically-defined Parkinson's Disease. Scientific Reports, 2018, 8, 12992.	3.3	12
34	Elucidating the relationship between migraine risk and brain structure using genetic data. Brain, 2022, 145, 3214-3224.	7.6	7