Sangeeta Chavan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12177896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acetylcholine-Synthesizing T Cells Relay Neural Signals in a Vagus Nerve Circuit. Science, 2011, 334, 98-101.	12.6	1,158
2	A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11942-11947.	7.1	705
3	Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11008-11013.	7.1	659
4	Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain, Behavior, and Immunity, 2009, 23, 41-45.	4.1	378
5	Modulation of TNF Release by Choline Requires α7 Subunit Nicotinic Acetylcholine Receptor-Mediated Signaling. Molecular Medicine, 2008, 14, 567-574.	4.4	288
6	Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis*. Critical Care Medicine, 2007, 35, 2762-2768.	0.9	216
7	Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis *. Critical Care Medicine, 2007, 35, 2762-2768.	0.9	211
8	The Selective α7 Agonist GTS-21 Attenuates Cytokine Production in Human Whole Blood and Human Monocytes Activated by Ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Molecular Medicine, 2009, 15, 195-202.	4.4	175
9	Cholinergic Anti-Inflammatory Pathway Activity and High Mobility Group Box-1 (HMGB1) Serum Levels in Patients with Rheumatoid Arthritis. Molecular Medicine, 2007, 13, 210-215.	4.4	162
10	Galantamine Alleviates Inflammation and Other Obesity-Associated Complications in High-Fat Diet-Fed Mice. Molecular Medicine, 2011, 17, 599-606.	4.4	96
11	Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: a randomised, double-blind, sham-controlled pilot trial. Annals of the Rheumatic Diseases, 2021, 80, 203-208.	0.9	82
12	Renal expression and serum levels of high mobility group box 1 protein in lupus nephritis. Arthritis Research and Therapy, 2012, 14, R36.	3.5	64
13	High-Mobility Group Box-1 Protein (HMGB1) Is Increased in Antineutrophilic Cytoplasmatic Antibody (ANCA)-Associated Vasculitis with Renal Manifestations. Molecular Medicine, 2011, 17, 29-35.	4.4	53
14	Protective targeting of high mobility group box chromosomal protein 1 in a spontaneous arthritis model. Arthritis and Rheumatism, 2010, 62, 2963-2972.	6.7	49
15	Successful therapy with anti-HMGB1 monoclonal antibodies in two separate experimental arthritis models. Annals of the Rheumatic Diseases, 2011, 70, A77-A78.	0.9	0
16	Choline Acetyltransferase Administration Decrease Blood Pressure in a Murine Model of Hypertension. FASEB Journal, 2021, 35, .	0.5	0
17	ILâ€1βâ€Induced Thermoregulation and Vagus Nerve Activity is Mediated by Transient Receptor Potential Ankyrin 1. FASEB Journal, 2021, 35, .	0.5	0