Paul D Hallett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1217501/publications.pdf

Version: 2024-02-01

164 papers 9,632 citations

51 h-index 92 g-index

183 all docs

183
docs citations

times ranked

183

9097 citing authors

#	Article	IF	CITATIONS
1	Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 2015, 206, 107-117.	7.3	805
2	Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 2011, 62, 59-68.	4.8	766
3	Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal, 2016, 15, 1-57.	2.2	445
4	Root- and microbial-derived mucilages affect soil structure and water transport. European Journal of Soil Science, 2000, 51, 435-443.	3.9	340
5	Changes to water repellence of soil aggregates caused by substrateâ€induced microbial activity. European Journal of Soil Science, 1999, 50, 35-40.	3.9	252
6	Matching roots to their environment. Annals of Botany, 2013, 112, 207-222.	2.9	247
7	Three-dimensional Microorganization of the Soil–Root–Microbe System. Microbial Ecology, 2006, 52, 151-158.	2.8	227
8	Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength. Journal of Experimental Botany, 2013, 64, 3711-3721.	4.8	215
9	Subcritical Water Repellency of Aggregates from a Range of Soil Management Practices. Soil Science Society of America Journal, 2001, 65, 184-190.	2.2	172
10	Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant and Soil, 2009, 314, 183-196.	3.7	159
11	Planting density influence on fibrous root reinforcement of soils. Ecological Engineering, 2010, 36, 276-284.	3.6	156
12	Plant exudates may stabilize or weaken soil depending on species, origin and time. European Journal of Soil Science, 2017, 68, 806-816.	3.9	144
13	Soil strength and macropore volume limit root elongation rates in many UK agricultural soils. Annals of Botany, 2012, 110, 259-270.	2.9	138
14	Mechanical Reinforcement of Soil by Willow Roots: Impacts of Root Properties and Root Failure Mechanism. Soil Science Society of America Journal, 2009, 73, 1276-1285.	2.2	128
15	Highâ€resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation. New Phytologist, 2017, 216, 124-135.	7.3	116
16	Calculation of the compression index and precompression stress from soil compression test data. Soil and Tillage Research, 2006, 89, 45-57.	5.6	113
17	Mitigating arable soil compaction: A review and analysis of available cost and benefit data. Soil and Tillage Research, 2015, 146, 10-25.	5.6	112
18	Material stiffness, branching pattern and soil matric potential affect the pullout resistance of model root systems. European Journal of Soil Science, 2007, 58, 1471-1481.	3.9	110

#	Article	IF	CITATIONS
19	Investigating the effects of anaerobic and aerobic post-treatment on quality and stability of organic fraction of municipal solid waste as soil amendment. Bioresource Technology, 2008, 99, 8631-8636.	9.6	110
20	Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer. New Phytologist, 2003, 157, 597-603.	7.3	108
21	The effect of long-term soil management on the physical and biological resilience of a range of arable and grassland soils in England. Geoderma, 2009, 153, 172-185.	5.1	108
22	Mechanical Resilience of Degraded Soil Amended with Organic Matter. Soil Science Society of America Journal, 2005, 69, 864-871.	2.2	104
23	Arable plant communities as indicators of farming practice. Agriculture, Ecosystems and Environment, 2010, 138, 17-26.	5.3	100
24	Millimeterâ€Scale Spatial Variability in Soil Water Sorptivity. Soil Science Society of America Journal, 2004, 68, 352-358.	2.2	96
25	Describing soil crack formation using elastic-plastic fracture mechanics. European Journal of Soil Science, 2005, 56, 31-38.	3.9	94
26	Algae influence the hydrophysical parameters of a sandy soil. Catena, 2013, 108, 58-68.	5.0	93
27	Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems. Geoderma, 2007, 140, 147-155.	5.1	86
28	Characterization of a novel air–liquid interface biofilm of Pseudomonas fluorescens SBW25. Microbiology (United Kingdom), 2009, 155, 1397-1406.	1.8	86
29	Deep rooting and drought screening of cereal crops: A novel field-based method and its application. Field Crops Research, 2009, 112, 165-171.	5.1	85
30	Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. European Journal of Soil Science, 2007, 58, 1221-1232.	3.9	84
31	Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia (Poland), 2007, 62, 537-541.	1.5	82
32	Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers. Soil Biology and Biochemistry, 2017, 109, 81-94.	8.8	81
33	Functional resilience of soil microbial communities depends on both soil structure and microbial community composition. Biology and Fertility of Soils, 2008, 44, 745-754.	4.3	80
34	Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma, 2017, 285, 323-332.	5.1	80
35	The biological and physical stability and resilience of a selection of Scottish soils to stresses. European Journal of Soil Science, 2007, 58, 811-821.	3.9	79
36	Integrating soil quality changes to arable agricultural systems following organic matter addition, or adoption of a ley-arable rotation. Applied Soil Ecology, 2010, 46, 43-53.	4.3	76

3

#	Article	IF	CITATIONS
37	A framework for modelling soil structure dynamics induced by biological activity. Global Change Biology, 2020, 26, 5382-5403.	9.5	75
38	Are the links between soil aggregate size class, soil organic matter and respiration rate artefacts of the fractionation procedure?. Soil Biology and Biochemistry, 2003, 35, 435-444.	8.8	74
39	A brief overview of the causes, impacts and amelioration of soil water repellency - a review. Soil and Water Research, 2008, 3, S21-S29.	1.7	72
40	Distribution of soil carbon and microbial biomass in arable soils under different tillage regimes. Plant and Soil, 2011, 338, 17-25.	3.7	72
41	Improved soil fertility from compost amendment increases root growth and reinforcement of surface soil on slopes. Ecological Engineering, 2014, 71, 458-465.	3.6	71
42	Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security, 2013, 2, 24-28.	8.1	70
43	Scaling of the reinforcement of soil slopes by living plants in a geotechnical centrifuge. Ecological Engineering, 2017, 109, 207-227.	3.6	70
44	Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant and Soil, 2007, 291, 109-118.	3.7	69
45	Factors controlling the spatial patterns of soil moisture in a grazed semiâ€arid steppe investigated by multivariate geostatistics. Ecohydrology, 2011, 4, 36-48.	2.4	68
46	Impact of fungal and bacterial biocides on microbial induced water repellency in arable soil. Geoderma, 2006, 135, 72-80.	5.1	66
47	Significance of root hairs for plant performance under contrasting field conditions and water deficit. Annals of Botany, 2021, 128, 1-16.	2.9	66
48	Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil?. Soil Biology and Biochemistry, 2010, 42, 850-859.	8.8	60
49	Priming of soil organic matter mineralisation is intrinsically insensitive to temperature. Soil Biology and Biochemistry, 2013, 66, 20-28.	8.8	58
50	Biomechanics of nodal, seminal and lateral roots of barley: effects of diameter, waterlogging and mechanical impedance. Plant and Soil, 2013, 370, 407-418.	3.7	57
51	Biological and physical resilience of soil amended with heavy metal-contaminated sewage sludge. European Journal of Soil Science, 2005, 56, 197-206.	3.9	55
52	Rheological stabilization of wet soils by model root and fungal exudates depends on clay mineralogy. European Journal of Soil Science, 2009, 60, 525-538.	3.9	55
53	Soil structure and its functions in ecosystems: Phase matter & amp; scale matter. Soil and Tillage Research, 2015, 146, 1-3.	5.6	53
54	Surface tension, rheology and hydrophobicity of rhizodeposits and seed mucilage influence soil water retention and hysteresis. Plant and Soil, 2019, 437, 65-81.	3.7	53

#	Article	IF	CITATIONS
55	Brachiaria species influence nitrate transport in soil by modifying soil structure with their root system. Scientific Reports, 2020, 10, 5072.	3.3	53
56	Centrifuge modelling of soil slopes reinforced with vegetation. Canadian Geotechnical Journal, 2010, 47, 1415-1430.	2.8	51
57	Imaging microstructure of the barley rhizosphere: particle packing and root hair influences. New Phytologist, 2019, 221, 1878-1889.	7.3	51
58	Changes to water repellence of soil caused by the growth of white-rot fungi: studies using a novel microcosm system. FEMS Microbiology Letters, 2000, 184, 73-77.	1.8	50
59	Application of Bayesian Belief Networks to quantify and map areas at risk to soil threats: Using soil compaction as an example. Soil and Tillage Research, 2013, 132, 56-68.	5.6	50
60	The application of fracture mechanics to crack propagation in dry soil. European Journal of Soil Science, 1995, 46, 591-599.	3.9	49
61	Plant exudates improve the mechanical conditions for root penetration through compacted soils. Plant and Soil, 2017, 421, 19-30.	3.7	49
62	Biophysics of the Vadose Zone: From Reality to Model Systems and Back Again. Vadose Zone Journal, 2013, 12, 1-17.	2.2	47
63	Physical response of rigid and non-rigid soils to analogues of biological exudates. European Journal of Soil Science, 2011, 62, 676-684.	3.9	46
64	Accumulation of nitrate and dissolved organic nitrogen at depth in a red soil Critical Zone. Geoderma, 2019, 337, 1175-1185.	5.1	45
65	Sustainable use of organic resources for bioenergy, food and water provision in rural Sub-Saharan Africa. Renewable and Sustainable Energy Reviews, 2015, 50, 903-917.	16.4	44
66	Extent and persistence of soil water repellency induced by pines in different geographic regions. Journal of Hydrology and Hydromechanics, 2018, 66, 360-368.	2.0	43
67	Impact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum vulgare L.). Plant and Soil, 2011, 339, 113-123.	3.7	42
68	Significance of root hairs at the field scale – modelling root water and phosphorus uptake under different field conditions. Plant and Soil, 2020, 447, 281-304.	3.7	42
69	Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco. Physiological Entomology, 2010, 35, 186-191.	1.5	41
70	Seasonal nitrous oxide emissions from field soils under reduced tillage, compost application or organic farming. Agriculture, Ecosystems and Environment, 2014, 189, 171-180.	5.3	41
71	Rhizosphereâ€Scale Quantification of Hydraulic and Mechanical Properties of Soil Impacted by Root and Seed Exudates. Vadose Zone Journal, 2018, 17, 1-12.	2.2	41
72	A simple fracture mechanics approach for assessing ductile crack growth in soil. Soil Science Society of America Journal, 2001, 65, 1083-1088.	2.2	40

#	Article	IF	Citations
73	Influence of types of restorative vegetation on the wetting properties of aggregates in a severely degraded clayey Ultisol in subtropical China. Geoderma, 2003, 115, 313-324.	5.1	40
74	Centrifuge modelling of soil slopes containing model plant roots. Canadian Geotechnical Journal, 2012, 49, 1-17.	2.8	40
75	Deep Nitrate Accumulation in a Highly Weathered Subtropical Critical Zone Depends on the Regolith Structure and Planting Year. Environmental Science & Environmental Science & 2020, 54, 13739-13747.	10.0	40
76	Root moisture content influence on root tensile tests of herbaceous plants. Catena, 2019, 172, 140-147.	5.0	39
77	Root:soil adhesion in the maize rhizosphere: the rheological approach. Plant and Soil, 1999, 211, 69-86.	3.7	38
78	Evaluation of spot and passive sampling for monitoring, flux estimation and risk assessment of pesticides within the constraints of a typical regulatory monitoring scheme. Science of the Total Environment, 2016, 569-570, 1369-1379.	8.0	38
79	Identification of pre-existing cracks on soil fracture surfaces using dye. Soil and Tillage Research, 1995, 33, 163-184.	5.6	36
80	Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate. Ecohydrology, 2010, 3, 413-420.	2.4	36
81	Resistance of simple plant root systems to uplift loads. Canadian Geotechnical Journal, 2010, 47, 78-95.	2.8	36
82	Do different methods for measuring the hydrophobicity of soil aggregates give the same trends in soil amended with residue?. Geoderma, 2010, 159, 221-227.	5.1	35
83	Effect of root age on the biomechanics of seminal and nodal roots of barley (Hordeum vulgare L.) in contrasting soil environments. Plant and Soil, 2015, 395, 253-261.	3.7	35
84	Soil stabilisation by water repellency under no-till management for soils with contrasting mineralogy and carbon quality. Geoderma, 2019, 355, 113902.	5.1	35
85	Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley. Field Crops Research, 2012, 128, 91-100.	5.1	34
86	Increase in the fracture toughness and bond energy of clay by a root exudate. European Journal of Soil Science, 2008, 59, 855-862.	3.9	33
87	Impact of hydraulic suction history on crack growth mechanics in soil. Water Resources Research, 2008, 44, .	4.2	30
88	Does the presence of glomalin relate to reduced water infiltration through hydrophobicity?. Canadian Journal of Soil Science, 2004, 84, 365-372.	1.2	29
89	Comparing capillary rise contact angles of soil aggregates and homogenized soil. Geoderma, 2008, 146, 336-343.	5.1	29
90	Mapping and expression of genes associated with raspberry fruit ripening and softening. Theoretical and Applied Genetics, 2017, 130, 557-572.	3.6	29

#	Article	IF	Citations
91	Interaction between contrasting rice genotypes and soil physical conditions induced by hydraulic stresses typical of alternate wetting and drying irrigation of soil. Plant and Soil, 2018, 430, 233-243.	3.7	27
92	How do enzymes catalysing soil nitrogen transformations respond to changing temperatures?. Biology and Fertility of Soils, 2013, 49, 99-103.	4.3	25
93	The effect of natural seed coatings of Capsella bursa-pastoris L. Medik. (shepherd's purse) on soil-water retention, stability and hydraulic conductivity. Plant and Soil, 2015, 387, 167-176.	3.7	25
94	Relating soil organic matter composition to soil water repellency for soil biopore surfaces different in history from two Bt horizons of a Haplic Luvisol. Ecohydrology, 2018, 11, e1949.	2.4	25
95	Building soil sustainability from root–soil interface traits. Trends in Plant Science, 2022, 27, 688-698.	8.8	24
96	Centrifuge modelling of climatic effects on clay embankments. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2009, 162, 91-100.	0.7	23
97	Earthworms bring compacted and loose soil to a similar mechanical state. Soil Biology and Biochemistry, 2009, 41, 656-658.	8.8	22
98	Variable responses of maize root architecture in elite cultivars due to soil compaction and moisture. Plant and Soil, 2020, 455, 79-91.	3.7	22
99	Soil water dynamics and availability for citrus and peanut along a hillslope at the Sunjia Red Soil Critical Zone Observatory (CZO). Soil and Tillage Research, 2016, 163, 110-118.	5.6	21
100	Impact of soil puddling intensity on the root system architecture of rice (Oryza sativa L.) seedlings. Soil and Tillage Research, 2019, 193, 1-7.	5.6	21
101	Eluviation of dissolved organic carbon under wetting and drying and its influence on water infiltration in degraded soils restored with vegetation. European Journal of Soil Science, 2004, 55, 725-737.	3.9	20
102	Imparting water repellency in completely decomposed granite with Tung oil. Journal of Cleaner Production, 2019, 230, 1316-1328.	9.3	20
103	Biomechanics of Plant Roots: estimating Localised Deformation with Particle Image Velocimetry. Biosystems Engineering, 2006, 94, 119-132.	4.3	19
104	Residues with varying decomposability interact differently with seed or root exudate compounds to affect the biophysical behaviour of soil. Geoderma, 2019, 343, 50-59.	5.1	18
105	Impact of basidiomycete fungi on the wettability of soil contaminated with a hydrophobic polycyclic aromatic hydrocarbon. Biologia (Poland), 2006, 61, S334-S338.	1.5	17
106	Evaluating soil stabilisation by biological processes using step-wise aggregate fractionation. Soil and Tillage Research, 2009, 102, 209-215.	5.6	17
107	Fluid flow in porous media using image-based modelling to parametrize Richards' equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170178.	2.1	17
108	Transport, retention, and release of Escherichia coli and Rhodococcus erythropolis through dry natural soils as affected by water repellency. Science of the Total Environment, 2019, 694, 133666.	8.0	17

#	Article	IF	CITATIONS
109	Rare earth oxides for labelling soil aggregate turnover: Impacts of soil properties, labelling method and aggregate structure. Geoderma, 2019, 351, 36-48.	5.1	17
110	Field Phenotyping and Long-Term Platforms to Characterise How Crop Genotypes Interact with Soil Processes and the Environment. Agronomy, 2014, 4, 242-278.	3.0	16
111	Surface Tension of Aqueous Solutions of Small-Chain Amino and Organic Acids. Journal of Chemical & Lamp; Engineering Data, 2019, 64, 5049-5056.	1.9	16
112	Microbial properties and nitrogen contents of arable soils under different tillage regimes. Soil Use and Management, 2014, 30, 152-159.	4.9	15
113	Analysing and simulating spatial patterns of crop yield in Guizhou Province based on artificial neural networks. Progress in Physical Geography, 2021, 45, 33-52.	3.2	14
114	Pore shape and organic compounds drive major changes in the hydrological characteristics of agricultural soils. European Journal of Soil Science, 2013, 64, 334-344.	3.9	14
115	Potential of multiâ€objective models for riskâ€based mapping of the resilience characteristics of soils: demonstration at a national level. Soil Use and Management, 2009, 25, 66-77.	4.9	13
116	The rheological properties of the seed coat mucilage of Capsella bursa-pastoris L. Medik. (shepherd's) Tj ETQq0 C	0 гдВТ /С	verlock 10 T
117	Temporal dynamics and vertical distribution of newly-derived carbon from a C3/C4 conversion in an Ultisol after 30-yr fertilization. Geoderma, 2019, 337, 1077-1085.	5.1	12
118	Mechanics of root-pullout from soil: A novel image and stress analysis procedure. , 2007, , 213-221.		12
119	Development of?15N stratification of NO3? in soil profiles. Rapid Communications in Mass Spectrometry, 2001, 15, 1274-1278.	1.5	11
120	Contrasting ability of deep and shallow rooting rice genotypes to grow through plough pans containing simulated biopores and cracks. Plant and Soil, 2021, 467, 515-530.	3.7	11
121	Importance of short-term temporal variability in soil physical properties for soil water modelling under different tillage practices. Soil and Tillage Research, 2021, 213, 105132.	5.6	11
122	Biohydrology: coupling biology and soil hydrology from pores to landscapes. Ecohydrology, 2010, 3, 379-381.	2.4	10
123	The role of sampling strategy on apparent temporal stability of soil moisture under subtropical hydroclimatic conditions. Journal of Hydrology and Hydromechanics, 2019, 67, 260-270.	2.0	10
124	Restoration of Soil Physical and Biological Stability Are Not Coupled in Response to Plants and Earthworms. Ecological Restoration, 2008, 26, 102-104.	0.5	10
125	Residue-C effects on denitrification vary with soil depth. Soil Biology and Biochemistry, 2016, 103, 365-375.	8.8	9
126	An automated microinfiltrometer to measure small-scale soil water infiltration properties. Journal of Hydrology and Hydromechanics, 2014, 62, 248-252.	2.0	8

#	Article	IF	Citations
127	The effect of root exudates on rhizosphere water dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180149.	2.1	8
128	Variable impacts of reduced and zero tillage on soil carbon storage across 4–10 years of UK field experiments. Journal of Soils and Sediments, 2021, 21, 890-904.	3.0	8
129	Rhizosphere Engineering by Plants: Quantifying Soil-Root Interactions. Advances in Agricultural Systems Modeling, 0, , 1-30.	0.3	6
130	Soil Physical Degradation: Threats and Opportunities to Food Security. Issues in Environmental Science and Technology, 2012, , 198-226.	0.4	6
131	Impact of root hairs on microscale soil physical properties in the field. Plant and Soil, 2022, 476, 491-509.	3.7	6
132	Effects of Mechanical Stresses and Strains on Soil Respiration. , 1999, , 305-316.		5
133	A sterile environment for growing, and monitoring, micro-organisms under a range of soil matric potentials. Soil Biology and Biochemistry, 2001, 33, 689-691.	8.8	5
134	Rise in CO2 affects soil water transport through repellency. Biologia (Poland), 2009, 64, 532-535.	1.5	5
135	Role of microbial communities in conferring resistance and resilience of soil carbon and nitrogen cycling following contrasting stresses. European Journal of Soil Biology, 2021, 104, 103308.	3.2	5
136	Organic manure and lime change water vapour sorption of a red soil by altering water repellency and specific surface area. European Journal of Soil Science, 2022, 73, .	3.9	5
137	Desiccation of a sensitive clay: application of the model CRACK: Discussion. Canadian Geotechnical Journal, 1998, 35, 1109-1110.	2.8	4
138	Soil physics: new approaches and emerging challenges. European Journal of Soil Science, 2013, 64, 277-278.	3.9	4
139	Probing soil physical and biological resilience data from a broad sampling of arable farms in Scotland. Soil Use and Management, 2015, 31, 491-503.	4.9	4
140	Mathematical Modeling of Greenhouse Gas Emissions from Agriculture for Different End Users. Advances in Agricultural Systems Modeling, 0, , 197-227.	0.3	4
141	A History of Understanding Crack Propagation and the Tensile Strength of Soil. Advances in Agricultural Systems Modeling, 0, , 93-119.	0.3	4
142	Le Bissonnais, Y. 1996. Aggregate stability and assessment of crustability and erodibility: 1. theory and methodology. <i>European Journal of Soil Science</i> , 47, 425–437 European Journal of Soil Science, 2016, 67, 5-10.	3.9	4
143	Retention and release of nutrients from polyhalite to soil. Soil Use and Management, 2020, 36, 117-122.	4.9	4
144	Paleotopography continues to drive surface to deep-layer interactions in a subtropical Critical Zone Observatory. Journal of Applied Geophysics, 2020, 175, 103987.	2.1	4

#	Article	IF	CITATIONS
145	Novel biomechanical analysis of plant roots. , 2007, , 13-20.		4
146	Changes in Soil Properties Following the Establishment of Exclosures in Ethiopia: A Meta-Analysis. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	4
147	Tensile Strainâ€Rate Dependency of Pore Water Pressure and Failure Strength of Soil. Vadose Zone Journal, 2014, 13, 1-6.	2.2	3
148	Resilience of soil functions to transient and persistent stresses is improved more by residue incorporation than the activity of earthworms. Applied Soil Ecology, 2019, 139, 10-14.	4.3	3
149	Hydrophobicity of Soil. Encyclopedia of Earth Sciences Series, 2011, , 378-384.	0.1	3
150	Simulation of phytomass productivity based on the optimum temperature for plant growth in a cold climate. Biologia (Poland), 2009, 64, 615-619.	1.5	2
151	Foreword to the thematic issue on Biohydrology. Biologia (Poland), 2009, 64, 415-418.	1.5	2
152	Reinforcement of Soil by Fibrous Roots. Advances in Agricultural Systems Modeling, 2015, , 197-228.	0.3	2
153	Gelifluction and Thixotropy of Maritime Antarctic Soils: Small-Scale Measurements with a Rotational Rheometer. Permafrost and Periglacial Processes, 2017, 28, 314-321.	3.4	2
154	A systems model describing the impact of organic resource use on farming households in low to middle income countries. Agricultural Systems, 2020, 184, 102895.	6.1	2
155	A laboratory study to disentangle hydrological, mechanical and structural mechanisms of soil stabilization by plant mucilage between eroding and depositional zones of a slope. European Journal of Soil Science, 2021, 72, 125-140.	3.9	2
156	Division or addition? New breeds of interdisciplinary research involving hydrology (Comments to the) Tj ETQq0 0	0 ggBT /O	verlock 10 Tf
157	A Simple Modelling Framework for Shallow Subsurface Water Storage and Flow. Water (Switzerland), 2019, 11, 1725.	2.7	1
158	Landmark Papers: No. 9 Jarvis, N.J. 2007. A review of nonâ€equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. ⟨i⟩ European Journal of Soil Science⟨/i⟩, 58, 523–546. European Journal of Soil Science, 2020, 71, 308-315.	3.9	1
159	Physiological and yield response in maize in cohesive tropical soil is improved through the addition of gypsum and leguminous mulch. Journal of Agricultural Science, 2020, 158, 57-64.	1.3	1
160	Biohydrologyâ€"Walking on drylands and swimming through pores. Ecohydrology, 2018, 11, e2040.	2.4	0
161	Thematic Issue on the Hydrological Effects of the Vegetation-Soil Complex. Journal of Hydrology and Hydromechanics, 2016, 64, 97-99.	2.0	O
162	Scaling of plant roots for geotechnical centrifuge tests using juvenile live roots or 3D printed analogues., 2018,, 401-406.		0

#	Article	IF	CITATIONS
163	Preface to the special issue on biohydrology dedicated to the memory of Dr. Louis W. Dekker. Journal of Hydrology and Hydromechanics, 2020, 68, 303-305.	2.0	O
164	Dual-platform micromechanical characterization of soils: Oscillation shear rheometry and spherical indentation. Soil and Tillage Research, 2022, 223, 105467.	5.6	0