
Michael J Franklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12174058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 2008, 6, 199-210.	28.6	1,860
2	Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of <i>Pseudomonas aeruginosa</i> Biofilms to Ciprofloxacin and Tobramycin. Antimicrobial Agents and Chemotherapy, 2003, 47, 317-323.	3.2	839
3	Role of Antibiotic Penetration Limitation in <i>Klebsiella pneumoniae</i> Biofilm Resistance to Ampicillin and Ciprofloxacin. Antimicrobial Agents and Chemotherapy, 2000, 44, 1818-1824.	3.2	811
4	Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl. Frontiers in Microbiology, 2011, 2, 167.	3.5	432
5	Role of Alginate and Its O Acetylation in Formation of Pseudomonas aeruginosa Microcolonies and Biofilms. Journal of Bacteriology, 2001, 183, 1047-1057.	2.2	386
6	Compromised Host Defense on <i>Pseudomonas aeruginosa</i> Biofilms: Characterization of Neutrophil and Biofilm Interactions. Journal of Immunology, 2003, 171, 4329-4339.	0.8	339
7	Stratified Growth in Pseudomonas aeruginosa Biofilms. Applied and Environmental Microbiology, 2004, 70, 6188-6196.	3.1	322
8	Heterogeneity in Pseudomonas aeruginosa Biofilms Includes Expression of Ribosome Hibernation Factors in the Antibiotic-Tolerant Subpopulation and Hypoxia-Induced Stress Response in the Metabolically Active Population. Journal of Bacteriology, 2012, 194, 2062-2073.	2.2	219
9	Localized Gene Expression in <i>Pseudomonas aeruginosa</i> Biofilms. Applied and Environmental Microbiology, 2008, 74, 4463-4471.	3.1	143
10	Contribution of Stress Responses to Antibiotic Tolerance in Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2015, 59, 3838-3847.	3.2	115
11	Mutant Analysis and Cellular Localization of the AlgI, AlgJ, and AlgF Proteins Required for O Acetylation of Alginate in Pseudomonas aeruginosa. Journal of Bacteriology, 2002, 184, 3000-3007.	2.2	100
12	Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. Journal of Antimicrobial Chemotherapy, 2009, 63, 129-135.	3.0	97
13	Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds. Wound Repair and Regeneration, 2016, 24, 373-383.	3.0	96
14	Heterogeneous rpoS and rhlR mRNA Levels and 16S rRNA/rDNA (rRNA Gene) Ratios within Pseudomonas aeruginosa Biofilms, Sampled by Laser Capture Microdissection. Journal of Bacteriology, 2010, 192, 2991-3000.	2.2	84
15	New Technologies for Studying Biofilms. Microbiology Spectrum, 2015, 3, .	3.0	83
16	Biofilms formed by the archaeon Haloferax volcaniiexhibit cellular differentiation and social motility, and facilitate horizontal gene transfer. BMC Biology, 2014, 12, 65.	3.8	81
17	Pitting corrosion by bacteria on carbon steel, determined by the scanning vibrating electrode technique. Corrosion Science, 1991, 32, 945-952.	6.6	79
18	Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. Microbiology (United Kingdom), 2007, 153, 3838-3851.	1.8	76

MICHAEL J FRANKLIN

#	Article	IF	CITATIONS
19	The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa. Molecular Microbiology, 2003, 47, 1123-1133.	2.5	61
20	Resuscitation of <i>Pseudomonas aeruginosa</i> from dormancy requires hibernation promoting factor (PA4463) for ribosome preservation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3204-3209.	7.1	61
21	Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiology Letters, 2001, 199, 67-71.	1.8	59
22	Conceptual Model of Biofilm Antibiotic Tolerance That Integrates Phenomena of Diffusion, Metabolism, Gene Expression, and Physiology. Journal of Bacteriology, 2019, 201, .	2.2	57
23	Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana. International Journal of Environmental Research and Public Health, 2019, 16, 1097.	2.6	49
24	The Pseudomonas aeruginosa PAO1 Two-Component Regulator CarSR Regulates Calcium Homeostasis and Calcium-Induced Virulence Factor Production through Its Regulatory Targets CarO and CarP. Journal of Bacteriology, 2016, 198, 951-963.	2.2	44
25	Evidence that the algI/algJ Gene Cassette, Required for O Acetylation of Pseudomonas aeruginosa Alginate, Evolved by Lateral Gene Transfer. Journal of Bacteriology, 2004, 186, 4759-4773.	2.2	43
26	A Pseudomonas aeruginosa EF-Hand Protein, EfhP (PA4107), Modulates Stress Responses and Virulence at High Calcium Concentration. PLoS ONE, 2014, 9, e98985.	2.5	39
27	Calcium Regulation of Bacterial Virulence. Advances in Experimental Medicine and Biology, 2020, 1131, 827-855.	1.6	39
28	Genotypic and Phenotypic Variation in Pseudomonas aeruginosa Reveals Signatures of Secondary Infection and Mutator Activity in Certain Cystic Fibrosis Patients with Chronic Lung Infections. Infection and Immunity, 2011, 79, 4802-4818.	2.2	31
29	Epimerase Active Domain of Pseudomonas aeruginosa AlgG, a Protein That Contains a Right-Handed β-Helix. Journal of Bacteriology, 2005, 187, 4573-4583.	2.2	30
30	Biocorrosion. Current Opinion in Biotechnology, 1991, 2, 450-456.	6.6	25
31	DropSOAC: Stabilizing Microfluidic Drops for Time-Lapse Quantification of Single-Cell Bacterial Physiology. Frontiers in Microbiology, 2019, 10, 2112.	3.5	24
32	Determination of Proton Flux and Conductance at pH 6.8 through Single Fo Sectors from Escherichia coli. Biophysical Journal, 2004, 87, 3594-3599.	0.5	20
33	Microbial and algal alginate gelation characterized by magnetic resonance. Journal of Biotechnology, 2012, 161, 320-327.	3.8	19
34	Characterization of algG encoding C5-epimerase in the alginate biosynthetic gene cluster of Pseudomonas fluorescens. Gene, 2001, 278, 107-114.	2.2	16
35	Genome Sequence of <i>Janthinobacterium</i> sp. CG23_2, a Violacein-Producing Isolate from an Antarctic Supraglacial Stream. Genome Announcements, 2016, 4, .	0.8	16
36	Expression and regulation of the <i>Pseudomonas aeruginosa</i> hibernation promoting factor. Molecular Microbiology, 2018, 110, 161-175.	2.5	12

MICHAEL J FRANKLIN

#	Article	IF	CITATIONS
37	qRT-PCR of Microbial Biofilms. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5066.	0.3	7
38	Isolation of RNA and DNA from Biofilm Samples Obtained by Laser Capture Microdissection Microscopy: Figure 1 Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5065.	0.3	7
39	Role of Hibernation Promoting Factor in Ribosomal Protein Stability during Pseudomonas aeruginosa Dormancy. International Journal of Molecular Sciences, 2020, 21, 9494.	4.1	7
40	Functional Characterization of the Pseudomonas aeruginosa Ribosome Hibernation-Promoting Factor. Journal of Bacteriology, 2020, 202, .	2.2	6
41	New Technologies for Studying Biofilms. , 2015, , 1-32.		5
42	Search for a Shared Genetic or Biochemical Basis for Biofilm Tolerance to Antibiotics across Bacterial Species. Antimicrobial Agents and Chemotherapy, 2022, , e0002122.	3.2	3