Jan C Oosterwijk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12173919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Medicine, 2022, 14, 51.	8.2	19
2	Genetic control of tumor development in malformation syndromes. American Journal of Medical Genetics, Part A, 2021, 185, 324-335.	1.2	2
3	Genotype-phenotype correlations for pancreatic cancer risk in Dutch melanoma families with pathogenic <i>CDKN2A</i> variants. Journal of Medical Genetics, 2021, 58, 264-269.	3.2	13
4	Reproductive decision-making in the context of hereditary cancer: the effects of an online decision aid on informed decision-making. Journal of Community Genetics, 2021, 12, 101-110.	1.2	6
5	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	12.8	19
6	Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.	27.0	532
7	The predictive ability of the 313 variant–based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant. Genetics in Medicine, 2021, 23, 1726-1737.	2.4	16
8	Cost-effectiveness of Breast Cancer Screening With Magnetic Resonance Imaging for Women at Familial Risk. JAMA Oncology, 2020, 6, 1381.	7.1	31
9	<p>Do Preferred Risk Formats Lead to Better Understanding? A Multicenter Controlled Trial on Communicating Familial Breast Cancer Risks Using Different Risk Formats</p> . Patient Preference and Adherence, 2020, Volume 14, 333-342.	1.8	4
10	Cholesterol profile in women with premature menopause after risk reducing salpingo-oophorectomy. Familial Cancer, 2019, 18, 19-27.	1.9	6
11	Interim Results from the IMPACT Study: Evidence for Prostate-specific Antigen Screening in BRCA2 Mutation Carriers. European Urology, 2019, 76, 831-842.	1.9	148
12	MRI versus mammography for breast cancer screening in women with familial risk (FaMRIsc): a multicentre, randomised, controlled trial. Lancet Oncology, The, 2019, 20, 1136-1147.	10.7	112
13	Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2019, 121, 180-192.	6.4	19
14	Addition of a 161-SNP polygenic risk score to family history-based risk prediction: impact on clinical management in non- <i>BRCA1/2</i> breast cancer families. Journal of Medical Genetics, 2019, 56, 581-589.	3.2	35
15	Should women with a BRCA1/2 mutation aged 60 and older be offered intensified breast cancer screening? $\hat{a} \in A$ cost-effectiveness analysis. Breast, 2019, 45, 82-88.	2.2	8
16	Multiple tumors due to mosaic genomeâ€wide paternal uniparental disomy. Pediatric Blood and Cancer, 2019, 66, e27715.	1.5	11
17	Online decision support for persons having a genetic predisposition to cancer and their partners during reproductive decisionâ€making. Journal of Genetic Counseling, 2019, 28, 533-542.	1.6	14
18	Height and Body Mass Index as Modifiers of Breast Cancer Risk in <i>BRCA1</i> / <i>2</i> Mutation Carriers: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2019, 111, 350-364.	6.3	30

#	Article	IF	CITATIONS
19	The development of an online decision aid to support persons having a genetic predisposition to cancer and their partners during reproductive decision-making: a usability and pilot study. Familial Cancer, 2019, 18, 137-146.	1.9	17
20	The association between cancer family history and ovarian cancer risk in BRCA1/2 mutation carriers: can it be explained by the mutation position?. European Journal of Human Genetics, 2018, 26, 848-857.	2.8	5
21	Prostate-specific antigen velocity in a prospective prostate cancer screening study of men with genetic predisposition. British Journal of Cancer, 2018, 118, 266-276.	6.4	12
22	The <i>BRCA1</i> c. 5096G>A p.Arg1699Gln (R1699Q) intermediate risk variant: breast and ovarian cancer risk estimation and recommendations for clinical management from the ENIGMA consortium. Journal of Medical Genetics, 2018, 55, 15-20.	3.2	50
23	Ovarian stimulation for IVF and risk of primary breast cancer in BRCA1/2 mutation carriers. British Journal of Cancer, 2018, 119, 357-363.	6.4	22
24	The BRCA1/2 Parent-of-Origin Effect on Breast Cancer Risk—Response. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 285-285.	2.5	0
25	Predictability of BRCA1/2 mutation status in patients with ovarian cancer: How to select women for genetic testing in middle-income countries. Maturitas, 2017, 105, 113-118.	2.4	5
26	CDC73-Related Disorders: Clinical Manifestations and Case Detection in Primary Hyperparathyroidism. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4534-4540.	3.6	65
27	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
28	Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3. Breast Cancer Research and Treatment, 2017, 161, 117-134.	2.5	18
29	Elevated Bone Turnover Markers after Risk-Reducing Salpingo-Oophorectomy in Women at Increased Risk for Breast and Ovarian Cancer. PLoS ONE, 2017, 12, e0169673.	2.5	8
30	Serum AMH levels in healthy women from BRCA1/2 mutated families: are they reduced?. Human Reproduction, 2016, 31, 2651-2659.	0.9	29
31	Do BRCA1/2 mutation carriers have an earlier onset of natural menopause?. Menopause, 2016, 23, 903-910.	2.0	22
32	Bias Explains Most of the Parent-of-Origin Effect on Breast Cancer Risk in <i>BRCA1/2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1251-1258.	2.5	9
33	Inverse birth cohort effects in ovarian cancer: Increasing risk in BRCA1 / 2 mutation carriers and decreasing risk in the general population. Gynecologic Oncology, 2016, 140, 289-294.	1.4	1
34	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18
35	The impact of mutation position on the gene and family history on ovarian cancer risk in BRCA1/2 mutation carriers. Maturitas, 2015, 82, 315.	2.4	0
36	An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research, 2015, 17, 61.	5.0	26

JAN C OOSTERWIJK

#	Article	IF	CITATIONS
37	Survival benefit in women with <i>BRCA1</i> mutation or familial risk in the <scp>MRI</scp> screening study (<scp>MRISC</scp>). International Journal of Cancer, 2015, 137, 1729-1738.	5.1	78
38	Bone mineral density and fractures after risk-reducing salpingo-oophorectomy in women at increased risk for breast and ovarian cancer. European Journal of Cancer, 2015, 51, 400-408.	2.8	32
39	Stopping ovarian cancer screening in BRCA1/2 mutation carriers: Effects on risk management decisions & outcome of risk-reducing salpingo-oophorectomy specimens. Maturitas, 2015, 80, 318-322.	2.4	19
40	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	21.4	221
41	Ovarian cancer in BRCA1/2 mutation carriers: The impact of mutation position and family history on the cancer risk. Maturitas, 2015, 82, 197-202.	2.4	4
42	Bias Correction Methods Explain Much of the Variation Seen in Breast Cancer Risks of <i>BRCA1/2</i> Mutation Carriers. Journal of Clinical Oncology, 2015, 33, 2553-2562.	1.6	22
43	Association of Type and Location of <i>BRCA1</i> and <i>BRCA2</i> Mutations With Risk of Breast and Ovarian Cancer. JAMA - Journal of the American Medical Association, 2015, 313, 1347.	7.4	390
44	Breast and ovarian cancer risks in a large series of clinically ascertained families with a high proportion of BRCA1 and BRCA2 Dutch founder mutations. Journal of Medical Genetics, 2014, 51, 98-107.	3.2	74
45	Variation in Mutation Spectrum Partly Explains Regional Differences in the Breast Cancer Risk of Female <i>BRCA</i> Mutation Carriers in the Netherlands. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2482-2491.	2.5	11
46	Targeted Prostate Cancer Screening in BRCA1 and BRCA2 Mutation Carriers: Results from the Initial Screening Round of the IMPACT Study. European Urology, 2014, 66, 489-499.	1.9	195
47	Relevance and efficacy of breast cancer screening inBRCA1andBRCA2mutation carriers above 60 years: A national cohort study. International Journal of Cancer, 2014, 135, 2940-2949.	5.1	13
48	Genetic testing and familial implications in breast-ovarian cancer families. Maturitas, 2014, 78, 252-257.	2.4	24
49	Risk-reducing mastectomy in BRCA1/2 mutation carriers: Factors influencing uptake and timing. Maturitas, 2014, 77, 180-184.	2.4	18
50	The counselees' selfâ€reported request for psychological help in genetic counseling for hereditary breast/ovarian cancer: not only psychopathology matters. Psycho-Oncology, 2013, 22, 902-910.	2.3	35
51	Genetic counseling does not fulfill the counselees' need for certainty in hereditary breast/ovarian cancer families: an explorative assessment. Psycho-Oncology, 2013, 22, 1167-1176.	2.3	19
52	The effectiveness of a graphical presentation in addition to a frequency format in the context of familial breast cancer risk communication: a multicenter controlled trial. BMC Medical Informatics and Decision Making, 2013, 13, 55.	3.0	10
53	Cost-Effectiveness of Screening Women With Familial Risk for Breast Cancer With Magnetic Resonance Imaging. Journal of the National Cancer Institute, 2013, 105, 1314-1321.	6.3	57
54	Proven non-carriers in BRCA families have an earlier age of onset of breast cancer. European Journal of Cancer, 2013, 49, 2101-2106.	2.8	15

JAN C OOSTERWIJK

#	Article	IF	CITATIONS
55	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
56	Support of the â€~fallopian tube hypothesis' in a prospective series of risk-reducing salpingo-oophorectomy specimens. European Journal of Cancer, 2013, 49, 132-141.	2.8	95
5 7	Optimal age to start preventive measures in women with <i>BRCA1/2</i> mutations or high familial breast cancer risk. International Journal of Cancer, 2013, 133, 156-163.	5.1	20
58	A Nonsynonymous Polymorphism in <i>IRS1</i> Modifies Risk of Developing Breast and Ovarian Cancers in <i>BRCA1</i> and Ovarian Cancer in <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1362-1370.	2.5	23
59	Differences in Natural History between Breast Cancers in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers and Effects of MRI Screening-MRISC, MARIBS, and Canadian Studies Combined. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1458-1468.	2.5	79
60	Breast Cancer Incidence After Risk-Reducing Salpingo-Oophorectomy in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Prevention Research, 2012, 5, 1291-1297.	1.5	24
61	Model of care for women at increased risk of breast and ovarian cancer. Maturitas, 2012, 71, 3-5.	2.4	16
62	Breast density as indicator for the use of mammography or MRI to screen women with familial risk for breast cancer (FaMRIsc): a multicentre randomized controlled trial. BMC Cancer, 2012, 12, 440.	2.6	19
63	Exploring the short-term impact of DNA-testing in breast cancer patients: The counselees' perception matters, but the actual BRCA1/2 result does not. Patient Education and Counseling, 2012, 86, 239-251.	2.2	31
64	Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2mutation carriers. Breast Cancer Research, 2012, 14, R33.	5.0	78
65	Breast cancer screening in BRCA1 and BRCA2 mutation carriers after risk reducing salpingo-oophorectomy. Breast Cancer Research and Treatment, 2011, 129, 157-164.	2.5	8
66	Exposure to low-dose radiation and the risk of breast cancer among women with a familial or genetic predisposition: a meta-analysis. European Radiology, 2010, 20, 2547-2556.	4.5	66
67	Penetrance of breast cancer, ovarian cancer and contralateral breast cancer in BRCA1 and BRCA2 families: high cancer incidence at older age. Breast Cancer Research and Treatment, 2010, 124, 643-651.	2.5	157
68	Keratosis Follicularis Spinulosa Decalvans is caused by mutations in MBTPS2. Human Mutation, 2010, 31, 1125-1133.	2.5	67
69	<i>BRCA1</i> -Associated Breast Cancers Present Differently From <i>BRCA2</i> -Associated and Familial Cases: Long-Term Follow-Up of the Dutch MRISC Screening Study. Journal of Clinical Oncology, 2010, 28, 5265-5273.	1.6	166
70	The validation of a simulation model incorporating radiation risk for mammography breast cancer screening in women with a hereditary-increased breast cancer risk. European Journal of Cancer, 2010, 46, 495-504.	2.8	19
71	A simple method for co-segregation analysis to evaluate the pathogenicity of unclassified variants; BRCA1 and BRCA2 as an example. BMC Cancer, 2009, 9, 211.	2.6	57
72	Time to stop ovarian cancer screening in BRCA1/2 mutation carriers?. International Journal of Cancer, 2009. 124. 919-923.	5.1	116

JAN C OOSTERWIJK

#	Article	IF	CITATIONS
73	A method to assess the clinical significance of unclassified variants in the BRCA1 and BRCA2genes based on cancer family history. Breast Cancer Research, 2009, 11, R8.	5.0	45
74	Design of the BRISC study: a multicentre controlled clinical trial to optimize the communication of breast cancer risks in genetic counselling. BMC Cancer, 2008, 8, 283.	2.6	17
75	One Risk Fits All?. Journal of Clinical Oncology, 2007, 25, 3383-3384.	1.6	4
76	Factors Affecting Sensitivity and Specificity of Screening Mammography and MRI in Women with an Inherited Risk for Breast Cancer. Breast Cancer Research and Treatment, 2006, 100, 109-119.	2.5	83
77	A DGGE system for comprehensive mutation screening ofBRCA1andBRCA2: application in a Dutch cancer clinic setting. Human Mutation, 2006, 27, 654-666.	2.5	75
78	Hereditary breast cancer growth rates and its impact on screening policy. European Journal of Cancer, 2005, 41, 1610-1617.	2.8	74
79	No increased susceptibility to breast cancer from combined CHEK2 1100delC genotype and the HLA class III region risk factors. European Journal of Cancer, 2005, 41, 1819-1823.	2.8	13
80	Inheritance of most X-linked traits is not dominant or recessive, just X-linked. American Journal of Medical Genetics Part A, 2004, 129A, 136-143.	2.4	140
81	Efficacy of MRI and Mammography for Breast-Cancer Screening in Women with a Familial or Genetic Predisposition. New England Journal of Medicine, 2004, 351, 427-437.	27.0	1,563
82	The HLA class III subregion is responsible for an increased breast cancer risk. Human Molecular Genetics, 2003, 12, 2311-2319.	2.9	37
83	Accuracy of family history of cancer: clinical genetic implications. European Journal of Human Genetics, 2000, 8, 181-186.	2.8	91
84	Prenatal diagnosis of trisomy 13 on fetal cells obtained from maternal blood after minor enrichment. Prenatal Diagnosis, 1998, 18, 1082-1085.	2.3	39
85	Two-colour immunocytochemical staining of gamma (γ) and epsilon (Îμ) type haemoglobin in fetal red cells. , 1998, 18, 1131-1137.		29
86	Development of a preparation and staining method for fetal erythroblasts in maternal blood: Simultaneous immunocytochemical staining and FISH analysis. , 1998, 32, 170-177.		30
87	Fetal cell detection in maternal blood: A study in 236 samples using erythroblast morphology, DAB and Hbf staining, and FISH analysis. , 1998, 32, 178-185.		35
88	Strategies for Rare-Event Detection: An Approach for Automated Fetal Cell Detection in Maternal Blood. American Journal of Human Genetics, 1998, 63, 1783-1792.	6.2	45
89	Prenatal diagnosis of trisomy 13 on fetal cells obtained from maternal blood after minor enrichment. Prenatal Diagnosis, 1998, 18, 1082-1085.	2.3	3
90	Rapid detection of BRCA1 mutations by the protein truncation test. Nature Genetics, 1995, 10, 208-212.	21.4	307

#	Article	IF	CITATIONS
91	Confirmation of X-Linked Inheritance and Provisional Mapping of the Keratosis Follicularis Spinulosa Decalvans Gene on XP in a Large Dutch Family. Ophthalmic Paediatrics and Genetics, 1992, 13, 27-30.	0.4	6