Fyodor D Urnov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1217333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Piloting an integrated SARS-CoV-2 testing and data system for outbreak containment among college students: A prospective cohort study. PLoS ONE, 2021, 16, e0245765.	2.5	11
2	The Cas9 Hammer—and Sickle: A Challenge for Genome Editors. CRISPR Journal, 2021, 4, 6-13.	2.9	11
3	Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Science Advances, 2021, 7, .	10.3	31
4	CRISPR–Cas9 can cause chromothripsis. Nature Genetics, 2021, 53, 768-769.	21.4	7
5	Robotic RNA extraction for SARS-CoV-2 surveillance using saliva samples. PLoS ONE, 2021, 16, e0255690.	2.5	14
6	Imagine CRISPR cures. Molecular Therapy, 2021, 29, 3103-3106.	8.2	9
7	Blueprint for a pop-up SARS-CoV-2 testing lab. Nature Biotechnology, 2020, 38, 791-797.	17.5	50
8	Prime Time for Genome Editing?. New England Journal of Medicine, 2020, 382, 481-484.	27.0	7
9	Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nature Medicine, 2019, 25, 1131-1142.	30.7	139
10	Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease. Nature Biotechnology, 2016, 34, 424-429.	17.5	166
11	Functional footprinting of regulatory DNA. Nature Methods, 2015, 12, 927-930.	19.0	123
12	LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: Reversal by gene correction. Neurobiology of Disease, 2014, 62, 381-386.	4.4	235
13	Edit the genome to understand it. Nature, 2014, 513, 40-41.	27.8	5
14	Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Genes and Development, 2014, 28, 1885-1899.	5.9	101
15	Translating dosage compensation to trisomy 21. Nature, 2013, 500, 296-300.	27.8	282
16	lsolation and characterization of the ecdysone receptor and its heterodimeric partner ultraspiracle through development in Sciara coprophila. Chromosoma, 2013, 122, 103-119.	2.2	11
17	Trait stacking via targeted genome editing. Plant Biotechnology Journal, 2013, 11, 1126-1134.	8.3	234
18	In vivo cleavage of transgene donors promotes nucleaseâ€mediated targeted integration. Biotechnology and Bioengineering, 2013, 110, 871-880.	3.3	167

Fyodor D Urnov

#	Article	IF	CITATIONS
19	Activation domains for controlling plant gene expression using designed transcription factors. Plant Biotechnology Journal, 2013, 11, 671-680.	8.3	33
20	Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nature Methods, 2012, 9, 993-998.	19.0	149
21	Transcriptional activation of <i>Brassica napus</i> βâ€ketoacylâ€ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotechnology Journal, 2012, 10, 783-791.	8.3	57
22	Targeted Genome Editing Across Species Using ZFNs and TALENs. Science, 2011, 333, 307-307.	12.6	556
23	Dissection of Splicing Regulation at an Endogenous Locus by Zinc-Finger Nuclease-Mediated Gene Editing. PLoS ONE, 2011, 6, e16961.	2.5	8
24	Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biology, 2011, 13, 331-337.	10.3	233
25	Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nature Methods, 2011, 8, 74-79.	19.0	376
26	A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2011, 29, 143-148.	17.5	1,855
27	Efficient targeted gene disruption in the soma and germ line of the frog <i>Xenopus tropicalis</i> using engineered zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7052-7057.	7.1	135
28	Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 2010, 11, 636-646.	16.3	1,863
29	Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Research, 2010, 38, e152-e152.	14.5	177
30	Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Research, 2010, 20, 1133-1142.	5.5	280
31	Chromosomal translocations induced at specified loci in human stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10620-10625.	7.1	184
32	Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Molecular Biology, 2009, 69, 699-709.	3.9	213
33	Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 2009, 27, 851-857.	17.5	990
34	Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nature Cell Biology, 2009, 11, 934-942.	10.3	123
35	Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases. Science, 2009, 325, 433-433.	12.6	836
36	Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5809-5814.	7.1	347

Fyodor D Urnov

#	Article	IF	CITATIONS
37	Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26, 702-708.	17.5	842
38	Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3055-3060.	7.1	352
39	Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotechnology, 2007, 25, 1298-1306.	17.5	797
40	Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 2005, 435, 646-651.	27.8	1,512
41	Chromatin remodeling as a guide to transcriptional regulatory networks in mammals. Journal of Cellular Biochemistry, 2003, 88, 684-694.	2.6	34
42	Chromatin as a Tool for the Study of Genome Function in Cancer. Annals of the New York Academy of Sciences, 2003, 983, 5-21.	3.8	21
43	A feel for the template: zinc finger protein transcription factors and chromatin. Biochemistry and Cell Biology, 2002, 80, 321-333.	2.0	31
44	Biotechnologies and therapeutics: chromatin as a target. Current Opinion in Genetics and Development, 2002, 12, 233-242.	3.3	22
45	Designed transcription factors as tools for therapeutics and functional genomics. Biochemical Pharmacology, 2002, 64, 919-923.	4.4	37
46	A DNase I hypersensitive site flanks an origin of DNA replication and amplification in Sciara. Chromosoma, 2002, 111, 291-303.	2.2	17