Jane E Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12172455/publications.pdf

Version: 2024-02-01

38742 60623 12,979 81 50 81 citations h-index g-index papers 92 92 92 9767 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annual Review of Plant Biology, 2015, 66, 487-511.	18.7	1,075
2	Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance. Cell, 2000, 103, 1111-1120.	28.9	946
3	Plant immunity: the EDS1 regulatory node. Current Opinion in Plant Biology, 2005, 8, 383-389.	7.1	542
4	Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 2003, 14, 177-193.	6.6	521
5	Interplay of signaling pathways in plant disease resistance. Trends in Genetics, 2000, 16, 449-455.	6.7	518
6	Salicylic Acid–Independent ENHANCED DISEASE SUSCEPTIBILITY1 Signaling in Arabidopsis Immunity and Cell Death Is Regulated by the Monooxygenase FMO1 and the Nudix Hydrolase NUDT7. Plant Cell, 2006, 18, 1038-1051.	6.6	455
7	Arabidopsis SENESCENCE-ASSOCIATED GENE101 Stabilizes and Signals within an ENHANCED DISEASE SUSCEPTIBILITY1 Complex in Plant Innate Immunity. Plant Cell, 2005, 17, 2601-2613.	6.6	413
8	Regulatory Role of SGT1 in Early R Gene-Mediated Plant Defenses. Science, 2002, 295, 2077-2080.	12.6	385
9	LESION SIMULATING DISEASE 1 Is Required for Acclimation to Conditions That Promote Excess Excitation Energy Â. Plant Physiology, 2004, 136, 2818-2830.	4.8	328
10	Chloroplast Signaling and <i>LESION SIMULATING DISEASE 1 </i> Acclimation and Immunity in <i>Arabidopsis </i> Plant Cell, 2008, 20, 2339-2356.	6.6	326
11	<i>Arabidopsis</i> EDS1 Connects Pathogen Effector Recognition to Cell Compartment–Specific Immune Responses. Science, 2011, 334, 1401-1404.	12.6	284
12	Nuclear Accumulation of the Arabidopsis Immune Receptor RPS4 Is Necessary for Triggering EDS1-Dependent Defense. Current Biology, 2007, 17, 2023-2029.	3.9	281
13	Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant Journal, 2002, 29, 439-451.	5 . 7	256
14	The Disease Resistance Signaling Components <i>EDS1</i> and <i>PAD4</i> Are Essential Regulators of the Cell Death Pathway Controlled by <i>LSD1</i> in Arabidopsis. Plant Cell, 2001, 13, 2211-2224.	6.6	249
15	A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytologist, 2017, 213, 1802-1817.	7.3	245
16	LEAFY Target Genes Reveal Floral Regulatory Logic, cis Motifs, and a Link to Biotic Stimulus Response. Developmental Cell, 2011, 20, 430-443.	7.0	239
17	Nuclear Pore Complex Component MOS7/Nup88 Is Required for Innate Immunity and Nuclear Accumulation of Defense Regulators in <i>Arabidopsis</i> Aâ. Plant Cell, 2009, 21, 2503-2516.	6.6	233
18	Structural Basis for Signaling by Exclusive EDS1 Heteromeric Complexes with SAG101 or PAD4 in Plant Innate Immunity. Cell Host and Microbe, 2013, 14, 619-630.	11.0	227

#	Article	IF	CITATIONS
19	Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. New Phytologist, 2011, 191, 107-119.	7.3	206
20	Balanced Nuclear and Cytoplasmic Activities of EDS1 Are Required for a Complete Plant Innate Immune Response. PLoS Pathogens, 2010, 6, e1000970.	4.7	202
21	A Coevolved EDS1-SAG101-NRG1 Module Mediates Cell Death Signaling by TIR-Domain Immune Receptors. Plant Cell, 2019, 31, 2430-2455.	6.6	198
22	Arabidopsis RAR1 Exerts Rate-Limiting Control of R Gene–Mediated Defenses against Multiple Pathogens. Plant Cell, 2002, 14, 979-992.	6.6	197
23	Arabidopsis SGT1b Is Required for SCFTIR1-Mediated Auxin Response. Plant Cell, 2003, 15, 1310-1319.	6.6	194
24	Interaction between SGT1 and Cytosolic/Nuclear HSC70 Chaperones Regulates <i>Arabidopsis</i> Immune Responses. Plant Cell, 2008, 19, 4061-4076.	6.6	187
25	Monoterpenes Support Systemic Acquired Resistance within and between Plants. Plant Cell, 2017, 29, 1440-1459.	6.6	184
26	An EDS1 orthologue is required for N â€mediated resistance against tobacco mosaic virus. Plant Journal, 2002, 29, 569-579.	5.7	180
27	Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Molecular Biology, 2004, 55, 135-147.	3.9	178
28	Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 334-339.	7.1	172
29	Arabidopsis Chloroplastic Glutathione Peroxidases Play a Role in Cross Talk between Photooxidative Stress and Immune Responses Â. Plant Physiology, 2009, 150, 670-683.	4.8	171
30	The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant Journal, 2005, 42, 95-110.	5.7	157
31	Chemical Genetics Reveals Negative Regulation of Abscisic Acid Signaling by a Plant Immune Response Pathway. Current Biology, 2011, 21, 990-997.	3.9	152
32	Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, <i>ENHANCED DISEASE SUSCEPTIBILITY1</i> -DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance Â, Â Â. Plant Physiology, 2014, 165, 791-809.	4.8	151
33	Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. Plant Journal, 2010, 62, 628-640.	5.7	138
34	A locus conferring resistance to <i>Colletotrichum higginsianum</i> is shared by four geographically distinct Arabidopsis accessions. Plant Journal, 2009, 60, 602-613.	5.7	131
35	Nonsense-Mediated mRNA Decay Modulates Immune Receptor Levels to Regulate Plant Antibacterial Defense. Cell Host and Microbe, 2014, 16, 376-390.	11.0	126
36	Origins and Immunity Networking Functions of EDS1 Family Proteins. Annual Review of Phytopathology, 2020, 58, 253-276.	7.8	121

#	Article	IF	Citations
37	Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nature Genetics, 2010, 42, 1135-1139.	21.4	117
38	Runaway cell death, but not basal disease resistance, inlsd1is SA- andNIM1/NPR1-dependent. Plant Journal, 2002, 29, 381-391.	5.7	115
39	Characterization of eds1, a Mutation in Arabidopsis Suppressing Resistance to Peronospora parasitica Specified by Several Different RPP Genes. Plant Cell, 1996, 8, 2033.	6.6	112
40	Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nature Communications, 2021, 12, 3335.	12.8	112
41	Antagonism of Transcription Factor MYC2 by EDS1/PAD4 Complexes Bolsters Salicylic Acid Defense in Arabidopsis Effector-Triggered Immunity. Molecular Plant, 2018, 11, 1053-1066.	8.3	111
42	Phloemâ€based resistance to green peach aphid is controlled by Arabidopsis <i>PHYTOALEXIN DEFICIENT4</i> without its signaling partner <i>ENHANCED DISEASE SUSCEPTIBILITY1 </i> Plant Journal, 2007, 52, 332-341.	5.7	106
43	An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Nature Communications, 2019, 10, 772.	12.8	103
44	Constitutive disease resistance requires EDS1 in the Arabidopsis mutants cpr1 and cpr6 and is partially EDS1 -dependent in cpr5. Plant Journal, 2001, 26, 409-420.	5.7	96
45	Phenotypic characterization and molecular mapping of the Arabidopsis thaliana locus RPP5, determining disease resistance to Peronospora parasitica. Plant Journal, 1993, 4, 821-831.	5.7	83
46	Plant recognition of microbial patterns. Trends in Plant Science, 2003, 8, 245-247.	8.8	82
47	Accumulation of Isochorismate-derived 2,3-Dihydroxybenzoic 3-O-β-d-Xyloside in Arabidopsis Resistance to Pathogens and Ageing of Leaves. Journal of Biological Chemistry, 2010, 285, 25654-25665.	3.4	82
48	EDS1 signalling: At the nexus of intracellular and surface receptor immunity. Current Opinion in Plant Biology, 2021, 62, 102039.	7.1	82
49	Natural Variation in Small Molecule–Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1- and PAD4-Complexed R Protein VICTR in <i>Arabidopsis</i>	6.6	64
50	Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. Journal of Experimental Botany, 2014, 65, 5919-5931.	4.8	60
51	COP9 Signalosome- and 26S Proteasome-dependent Regulation of SCFTIR1 Accumulation in Arabidopsis. Journal of Biological Chemistry, 2009, 284, 7920-7930.	3.4	58
52	Molecular innovations in plant TIR-based immunity signaling. Plant Cell, 2022, 34, 1479-1496.	6.6	55
53	Discrimination of Arabidopsis PAD4 Activities in Defense against Green Peach Aphid and Pathogens \hat{A} \hat{A} . Plant Physiology, 2012, 158, 1860-1872.	4.8	54
54	Nucleocytoplasmic partitioning of tobacco N receptor is modulated by <scp>SGT</scp> 1. New Phytologist, 2013, 200, 158-171.	7.3	54

#	Article	IF	Citations
55	NLR locus-mediated trade-off between abiotic and biotic stress adaptation in Arabidopsis. Nature Plants, 2017, 3, 17072.	9.3	53
56	NOD-like receptor cooperativity in effector-triggered immunity. Trends in Immunology, 2014, 35, 562-570.	6.8	51
57	A misâ€regulated cyclic nucleotideâ€gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytologist, 2021, 230, 1078-1094.	7.3	51
58	A <scp>TIR</scp> â€" <scp>NBS</scp> protein encoded by <scp>A</scp> rabidopsis <i><scp>C</scp>hilling <scp>S</scp>ensitive 1</i> (<i><scp>CHS</scp>1</i>) limits chloroplast damage and cell death at low temperature. Plant Journal, 2013, 75, 539-552.	5.7	50
59	Discovery of a Family of Mixed Lineage Kinase Domain-like Proteins in Plants and Their Role in Innate Immune Signaling. Cell Host and Microbe, 2020, 28, 813-824.e6.	11.0	50
60	Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity. Frontiers in Plant Science, 2013, 4, 403.	3.6	46
61	Molecular and spatial constraints on NB-LRR receptor signaling. Current Opinion in Plant Biology, 2012, 15, 385-391.	7.1	44
62	Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization. Plant Cell, 2021, 33, 2015-2031.	6.6	40
63	Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity. PLoS Genetics, 2016, 12, e1005990.	3.5	38
64	UnravellingRgene-mediated disease resistance pathways inArabidopsis. Molecular Plant Pathology, 2000, 1, 17-24.	4.2	35
65	Potato Homologs of Arabidopsis thaliana Genes Functional in Defense Signaling—Identification, Genetic Mapping, and Molecular Cloning. Molecular Plant-Microbe Interactions, 2005, 18, 1107-1119.	2.6	34
66	Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility. PLoS Pathogens, 2020, 16, e1008835.	4.7	34
67	<i>SGT1</i> contributes to coronatine signaling and <i>Pseudomonas syringae</i> pv. <i>tomato</i> disease symptom development in tomato and Arabidopsis. New Phytologist, 2011, 189, 83-93.	7.3	32
68	Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. Plant and Cell Physiology, 2018, 59, 1592-1607.	3.1	31
69	Nucleoporin MOS7/Nup88 contributes to plant immunity and nuclear accumulation of defense regulators. Nucleus, 2010, 1, 332-336.	2.2	30
70	The Combined Action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 Promotes Salicylic Acid-Mediated Defenses to Limit Fusarium graminearum Infection in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2015, 28, 943-953.	2.6	29
71	Staying in the fold. Plant Signaling and Behavior, 2008, 3, 283-285.	2.4	27
72	<i>NLR</i> Mutations Suppressing Immune Hybrid Incompatibility and Their Effects on Disease Resistance. Plant Physiology, 2018, 177, 1152-1169.	4.8	21

#	Article	IF	Citations
73	Cavity surface residues of <scp>PAD4</scp> and <scp>SAG101</scp> contribute to <scp>EDS1</scp> dimer signaling specificity in plant immunity. Plant Journal, 2022, 110, 1415-1432.	5.7	20
74	Arabidopsis immunity regulator EDS1 in a PAD4/SAG101-unbound form is a monomer with an inherently inactive conformation. Journal of Structural Biology, 2019, 208, 107390.	2.8	19
75	<i>Arabidopsis</i> EDR1 Protein Kinase Regulates the Association of EDS1 and PAD4 to Inhibit Cell Death. Molecular Plant-Microbe Interactions, 2020, 33, 693-703.	2.6	17
76	The <i>Arabidopsis</i> PAD4 Lipase-Like Domain Is Sufficient for Resistance to Green Peach Aphid. Molecular Plant-Microbe Interactions, 2020, 33, 328-335.	2.6	15
77	Functional Analysis of Hyaloperonospora arabidopsidis RXLR Effectors. PLoS ONE, 2014, 9, e110624.	2.5	14
78	Increased Resistance to Biotrophic Pathogens in the Arabidopsis Constitutive Induced Resistance 1 Mutant Is EDS1 and PAD4-Dependent and Modulated by Environmental Temperature. PLoS ONE, 2014, 9, e109853.	2.5	11
79	Small Molecule DFPM Derivative-Activated Plant Resistance Protein Signaling in Roots Is Unaffected by EDS1 Subcellular Targeting Signal and Chemical Genetic Isolation of victr R-Protein Mutants. PLoS ONE, 2016, 11, e0155937.	2.5	5
80	The Disease Resistance Signaling Components EDS1 and PAD4 Are Essential Regulators of the Cell Death Pathway Controlled by LSD1 in Arabidopsis. Plant Cell, 2001, 13, 2211.	6.6	4
81	Crystallization and preliminary crystallographic analysis of <i>Arabidopsis thaliana </i> EDS1, a key component of plant immunity, in complex with its signalling partner SAG101. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 245-248.	0.7	4