Hartmut Kutzke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12171944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New materials used for the consolidation of archaeological wood–past attempts, present struggles, and future requirements. Journal of Cultural Heritage, 2012, 13, S183-S190.	3.3	67
2	The presence of sulfuric acid in alum-conserved wood – Origin and consequences. Journal of Cultural Heritage, 2012, 13, S203-S208.	3.3	49
3	Novel application of liquid chromatography/mass spectrometry for the characterization of drying oils in art: Elucidation on the composition of original paint materials used by Edvard Munch (1863–1944). Analytica Chimica Acta, 2015, 896, 177-189.	5.4	43
4	Chemical analyses of extremely degraded wood using analytical pyrolysis and inductively coupled plasma atomic emission spectroscopy. Microchemical Journal, 2016, 124, 368-379.	4.5	42
5	New insights into the degradation processes and influence of the conservation treatment in alum-treated wood from the Oseberg collection. Microchemical Journal, 2017, 132, 119-129.	4.5	34
6	In situ polymerisation of isoeugenol as a green consolidation method for waterlogged archaeological wood. Scientific Reports, 2017, 7, 46481.	3.3	32
7	Synthesis and characterisation of lignin-like oligomers as a bio-inspired consolidant for waterlogged archaeological wood. Pure and Applied Chemistry, 2016, 88, 969-977.	1.9	27
8	TREATMENT OF WATERLOGGED ARCHAEOLOGICAL WOOD USING CHITOSAN- AND MODIFIED CHITOSAN SOLUTIONS. PART 1: CHEMICAL COMPATIBILITY AND MICROSTRUCTURE. Journal of the American Institute for Conservation, 2015, 54, 3-13.	0.5	22
9	Navigating conservation strategies: linking material research on alum-treated wood from the Oseberg collection to conservation decisions. Heritage Science, 2018, 6, .	2.3	21
10	Nanotechnologies for the restoration of alum-treated archaeological wood. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	17
11	Hybrid nanocomposites made of diol-modified silanes and nanostructured calcium hydroxide. Applications to Alum-treated wood. Pure and Applied Chemistry, 2017, 89, 29-39.	1.9	13
12	Identification of green pigments and binders in late medieval painted wings from Norwegian churches. Microchemical Journal, 2020, 156, 104811.	4.5	13
13	Aminoethyl substitution enhances the self-assembly properties of an aminocellulose as a potential archaeological wood consolidant. European Biophysics Journal, 2020, 49, 791-798.	2.2	12
14	Tert-butyldimethylsilyl chitosan synthesis and characterization by analytical ultracentrifugation, for archaeological wood conservation. European Biophysics Journal, 2020, 49, 781-789.	2.2	11
15	Climatically Induced Degradation Processes in Conserved Archaeological Wood Studied by Time-lapse Photography. Studies in Conservation, 2019, 64, 115-123.	1.1	6
16	Infrared, Raman and computational study of a crystalline mononuclear copper complex of relevance to the pigment Verdigris. Vibrational Spectroscopy, 2018, 97, 66-74.	2.2	5
17	Evaluation of Soda Lignin from Wheat Straw/Sarkanda Grass as a Potential Future Consolidant for Archaeological Wood. Forests, 2021, 12, 911.	2.1	5
18	Virtual unwrapping of the <i>BISPEGATA amulet</i> , a multiple folded medieval lead amulet, by using neutron tomography. Archaeometry, 2022, 64, 969-978.	1.3	4

#	Article	IF	CITATIONS
19	On the changing appearance of, and potential treatment options for, softening and dripping paints in CoBrA oil paintings. Studies in Conservation, 2016, 61, 269-270.	1.1	1