Robert M Farrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12171939/publications.pdf

Version: 2024-02-01

361413 434195 1,725 37 20 31 citations h-index g-index papers 37 37 37 1549 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of high performance green c-plane III-nitride light-emitting diodes. Optics Express, 2018, 26, 5591.	3.4	47
2	Zinc oxide clad limited area epitaxy semipolar III-nitride laser diodes. Optics Express, 2018, 26, 12490.	3.4	4
3	Semipolar GaN-based laser diodes for Gbit/s white lighting communication: devices to systems. , 2018, , .		9
4	Semipolar III-nitride laser diodes with zinc oxide cladding. Optics Express, 2017, 25, 16922.	3.4	8
5	Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. Optics Express, 2017, 25, 17480.	3.4	75
6	Using tunnel junctions to grow monolithically integrated optically pumped semipolar III-nitride yellow quantum wells on top of electrically injected blue quantum wells. Optics Express, 2017, 25, 3841.	3.4	17
7	High luminous efficacy green light-emitting diodes with AlGaN cap layer. Optics Express, 2016, 24, 17868.	3.4	74
8	Dynamic characteristics of 410 \hat{a} 6%nm semipolar (202 \hat{A} 1 \hat{A}) III-nitride laser diodes with a modulation bandwidth of over 5 GHz. Applied Physics Letters, 2016, 109, .	3.3	27
9	Measurement and analysis of internal loss and injection efficiency for continuous-wave blue semipolar $(202\hat{A}^-1\hat{A}^-)$ III-nitride laser diodes with chemically assisted ion beam etched facets. Applied Physics Letters, 2016, 108, .	3.3	21
10	Effects of active region design on gain and carrier injection and transport of CW semipolar InGaN laser diodes. Applied Physics Express, 2016, 9, 092104.	2.4	6
11	High-speed performance of III-nitride 410 nm ridge laser diode on (202̄1̄) plane for visible light communication. , 2016, , .		1
12	Semipolar III–nitride light-emitting diodes with negligible efficiency droop up to â^¼1 W. Applied Physics Express, 2016, 9, 102102.	2.4	26
13	Designing optically pumped InGaN quantum wells with long wavelength emission for a phosphor-free device with polarized white-light emission. , $2016, \ldots$		O
14	High luminous flux from single crystal phosphor-converted laser-based white lighting system. Optics Express, 2016, 24, A215.	3.4	153
15	2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. Optics Express, 2015, 23, 29779.	3.4	103
16	Demonstration of low resistance ohmic contacts to p-type (202ì,,1ì,,) GaN. Semiconductor Science and Technology, 2015, 30, 075007.	2.0	12
17	4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Optics Express, 2015, 23, 16232.	3.4	117
18	Valence band states and polarized optical emission from nonpolar and semipolar Ill–nitride quantum well optoelectronic devices. Japanese Journal of Applied Physics, 2014, 53, 100206.	1.5	34

#	Article	IF	CITATIONS
19	Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties. Nano Letters, 2014, 14, 5960-5964.	9.1	39
20	Influence of the Structure Parameters on the Relaxation of Semipolar InGaN/GaN Multi Quantum Wells. Japanese Journal of Applied Physics, 2013, 52, 08JC10.	1.5	7
21	Comparison of Polished and Dry Etched Semipolar \$(11ar{2}2)\$ III-Nitride Laser Facets. IEEE Photonics Technology Letters, 2013, 25, 2105-2107.	2.5	6
22	Study of Temperature-Dependent Carrier Transport in a p-GaN/i-lnGaN/n-GaN Solar Cell Heterostructure using Ultrafast Spectroscopy. , 2013, , .		0
23	Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells. Applied Physics Letters, 2012, 100, .	3.3	53
24	Effect of doping and polarization on carrier collection in InGaN quantum well solar cells. Applied Physics Letters, 2011, 98, .	3.3	68
25	High internal and external quantum efficiency InGaN/GaN solar cells. Applied Physics Letters, 2011, 98, .	3.3	195
26	Blue InGaN/GaN laser diodes grown on (33\$ ar 3 ar 1 \$) freeâ€standing GaN substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2390-2392.	0.8	7
27	AlGaN-Cladding-Free \$m\$-Plane InGaN/GaN Laser Diodes with p-Type AlGaN Etch Stop Layers. Applied Physics Express, 2011, 4, 092105.	2.4	4
28	Observation of positive thermal power coefficient in InGaN/GaN quantum well solar cells. Applied Physics Letters, 2011, 99, 071104.	3.3	22
29	AlGaN-Cladding Free Green Semipolar GaN Based Laser Diode with a Lasing Wavelength of 506.4 nm. Applied Physics Express, 2010, 3, 011002.	2.4	82
30	InGaN/GaN Blue Laser Diode Grown on Semipolar (30ar31) Free-Standing GaN Substrates. Applied Physics Express, 2010, 3, 052702.	2.4	27
31	Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes. Applied Physics Express, 2010, 3, 092103.	2.4	27
32	Demonstration of Nonpolarm-Plane InGaN/GaN Laser Diodes. Japanese Journal of Applied Physics, 2007, 46, L190-L191.	1.5	204
33	Continuous-wave Operation of AlGaN-cladding-free Nonpolar m-Plane InGaN/GaN Laser Diodes. Japanese Journal of Applied Physics, 2007, 46, L761.	1.5	83
34	AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes. Japanese Journal of Applied Physics, 2007, 46, L284-L286.	1.5	73
35	A semipolar (10-1-3) InGaN/GaN green light emitting diode. Materials Research Society Symposia Proceedings, 2005, 892, 418.	0.1	1
36	Blue-Green InGaN/GaN Laser Diodes on Miscut <i>m</i> -Plane GaN Substrate. Applied Physics Express, 0, 2, 082102.	2.4	56

3

#	Article	lF	CITATIONS
37	Nonpolar AlGaN-Cladding-Free Blue Laser Diodes with InGaN Waveguiding. Applied Physics Express, 0, 2, 071003.	2.4	37