Shahriar Hojjati Emami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12170825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocompatible and Electroconductive Nanocomposite Scaffolds with Improved Piezoelectric Response for Bone Tissue Engineering. International Journal of Polymer Science, 2022, 2022, 1-10.	2.7	1
2	Targeted and Controlled Drug Delivery to a Rat Model of Heart Failure Through a Magnetic Nanocomposite. Annals of Biomedical Engineering, 2020, 48, 709-721.	2.5	9
3	Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids and Surfaces B: Biointerfaces, 2016, 147, 315-325.	5.0	49
4	Improved dispersibility of nano-graphene oxide by amphiphilic polymer coatings for biomedical applications. RSC Advances, 2016, 6, 77818-77829.	3.6	19
5	Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	47
6	Synthesis and characterization of an octaarginine functionalized graphene oxide nano-carrier for gene delivery applications. Physical Chemistry Chemical Physics, 2015, 17, 6328-6339.	2.8	80
7	Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1809-1819.	3.3	49
8	Behaviour of human induced pluripotent stem cell-derived neural progenitors on collagen scaffolds varied in freezing temperature and laminin concentration. Cell Journal, 2014, 16, 53-62.	0.2	13
9	Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab on A Chip, 2013, 13, 204-207.	6.0	121
10	Synthesis and characterization of glutaraldehyde-based crosslinked gelatin as a local hemostat sponge in surgery: An in vitro study. Bio-Medical Materials and Engineering, 2013, 23, 211-224.	0.6	37
11	Preparation and Characterization of Agarose-Gelatin Blend Hydrogels as a Cell Encapsulation Matrix: An In-Vitro Study. Journal of Macromolecular Science - Physics, 2012, 51, 1606-1616.	1.0	26
12	Microfluidic synthesis of chitosan-based nanoparticles for fuel cell applications. Chemical Communications, 2012, 48, 7744.	4.1	71
13	The effect of isopropanol addition on enhancement of transdermal controlled release of ibuprofen from ethylene vinyl acetate copolymer membranes. Journal of Applied Polymer Science, 2011, 122, 3048-3054.	2.6	14
14	Preparation and characterization of absorbable hemostat crosslinked gelatin sponges for surgical applications. Current Applied Physics, 2011, 11, 457-461.	2.4	46
15	Direct methanol fuel cell performance of sulfonated poly (2,6-dimethyl-1,4-phenylene) Tj ETQq1 1 0.784314 rgBT Energy, 2011, 36, 3688-3696.	/Overlock 7.1	10 Tf 50 18 39
16	A high-performance chitosan-based double layer proton exchange membrane with reduced methanol crossover. International Journal of Hydrogen Energy, 2011, 36, 6105-6111.	7.1	35
17	Preparation and evaluation of chitosan-gelatin composite scaffolds modified with chondroitin-6-sulphate. International Journal of Materials Research, 2010, 101, 1281-1285.	0.3	23
18	A study of starch addition on burst effect and diameter of polyurethane microspheres containing theophylline. Polymers for Advanced Technologies, 2008, 19, 167-170.	3.2	10

#	Article	IF	CITATIONS
19	Preparation and characterization of nanocomposite membranes made of poly(2,6-dimethyl-1,4-phenylene oxide) and montmorillonite for direct methanol fuel cells. Journal of Power Sources, 2008, 183, 551-556.	7.8	55
20	Preparation and Characterization of Polyurethane Microspheres Containing Theophylline. Journal of Bioactive and Compatible Polymers, 2006, 21, 341-349.	2.1	10
21	Crosslinked poly(ethylene oxide) hydrogels. Journal of Applied Polymer Science, 2003, 88, 1451-1455.	2.6	20
22	Degradable poly(ethylene oxide) hydrogels formed by crosslinking withtert-butylperoxybenzoate. Journal of Polymer Science Part A, 2003, 41, 520-527.	2.3	6