Adrian Sulistio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12168574/publications.pdf

Version: 2024-02-01

567281 794594 1,481 21 15 19 citations h-index g-index papers 22 22 22 2563 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intra-articular Treatment of Osteoarthritis with Diclofenac-Conjugated Polymer Reduces Inflammation and Pain. ACS Applied Bio Materials, 2019, 2, 2822-2832.	4.6	12
2	Targeted Graphene Oxide Networks: Cytotoxicity and Synergy with Anticancer Agents. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43523-43532.	8.0	18
3	Precise control of drug loading and release of an NSAID–polymer conjugate for long term osteoarthritis intra-articular drug delivery. Journal of Materials Chemistry B, 2017, 5, 6221-6226.	5.8	12
4	Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nature Microbiology, 2016, 1, 16162.	13.3	610
5	Fractionation of graphene oxide single nano-sheets in water-glycerol solutions using gradient centrifugation. Carbon, 2016, 103, 363-371.	10.3	24
6	Energy Barriers: Functional and Wellâ€Defined <i>β</i> â€Sheetâ€Assembled Porous Spherical Shells by Surfaceâ€Guided Peptide Formation (Adv. Funct. Mater. 21/2015). Advanced Functional Materials, 2015, 25, 3275-3275.	14.9	0
7	Functional and Wellâ€Defined <i>β</i> à€Sheetâ€Assembled Porous Spherical Shells by Surfaceâ€Guided Peptide Formation. Advanced Functional Materials, 2015, 25, 3147-3156.	14.9	18
8	Controlled Formation of Star Polymer Nanoparticles via Visible Light Photopolymerization. ACS Macro Letters, 2015, 4, 1012-1016.	4.8	95
9	Azobenzene-Functionalised Core Cross-Linked Star Polymers and their Host–Guest Interactions. Australian Journal of Chemistry, 2014, 67, 173.	0.9	13
10	Peptide-Based Star Polymers as Potential siRNA Carriers. Australian Journal of Chemistry, 2014, 67, 592.	0.9	24
11	Polypeptide films via N-carboxyanhydride ring-opening polymerization (NCA-ROP): past, present and future. Chemical Communications, 2014, 50, 4971.	4.1	61
12	Tailoring Substrate Hydrophilicity Using Grafted Polypeptide Nanocoatings. Australian Journal of Chemistry, 2014, 67, 598.	0.9	7
13	Polymerization: Assembly of Free-Standing Polypeptide Films via the Synergistic Combination of Hyperbranched Macroinitiators, the Grafting-From Approach, and Cross-Chain Termination (Adv.) Tj ETQq1 1 0.784	4 31.⊕ rgBT	 0verlock 1
14	Assembly of Freeâ€Standing Polypeptide Films via the Synergistic Combination of Hyperbranched Macroinitiators, the Graftingâ€From Approach, and Crossâ€Chain Termination. Advanced Materials, 2013, 25, 4619-4624.	21.0	16
15	Development of functional amino acid-based star polymers. Polymer Chemistry, 2012, 3, 224-234.	3.9	63
16	Peptide-Based Star Polymers: The Rising Star in Functional Polymers. Australian Journal of Chemistry, 2012, 65, 978.	0.9	29
17	Stabilization of Peptideâ€Based Vesicles via in situ Oxygenâ€Mediated Crossâ€Linking. Macromolecular Bioscience, 2012, 12, 1220-1231.	4.1	26
18	Star polymers composed entirely of amino acid building blocks: a route towards stereospecific, biodegradable and hierarchically functionalized stars. Chemical Communications, 2011, 47, 1151-1153.	4.1	70

ADRIAN SULISTIO

#	Article	IF	CITATION
19	Folic Acid Conjugated Amino Acid-Based Star Polymers for Active Targeting of Cancer Cells. Biomacromolecules, 2011, 12, 3469-3477.	5.4	109
20	Chemical Cross-Linking Gelatin with Natural Phenolic Compounds as Studied by High-Resolution NMR Spectroscopy. Biomacromolecules, 2010, 11, 1125-1132.	5.4	133
21	Chemical Modification of Gelatin by a Natural Phenolic Cross-linker, Tannic Acid. Journal of Agricultural and Food Chemistry, 2010, 58, 6809-6815.	5.2	140