Romi Ghose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12166714/publications.pdf

Version: 2024-02-01

		471509	4	414414	
38	1,075	17		32	
papers	citations	h-index		g-index	
38	38	38		1467	
all docs	docs citations	times ranked		citing authors	
3.22	3. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 			<i>G</i> - (44-2-0-2-0	

#	Article	IF	CITATIONS
1	Neratinib causes non-recoverable gut injury and reduces intestinal cytochrome P450 3A enzyme in mice. Toxicology Research, 2022, 11, 184-194.	2.1	6
2	Development of a physiologically based pharmacokinetic model to predict irinotecan disposition during inflammation. Chemico-Biological Interactions, 2022, 360, 109946.	4.0	2
3	Irinotecan decreases intestinal UDP-glucuronosyltransferase (UGT) 1A1 via TLR4/MyD88 pathway prior to the onset of diarrhea. Food and Chemical Toxicology, 2022, 166, 113246.	3.6	3
4	Immunization and Drug Metabolizing Enzymes: Focus on Hepatic Cytochrome P450 3A. Expert Review of Vaccines, 2021, 20, 623-634.	4.4	6
5	Effects of inflammation on irinotecan pharmacokinetics and development of a best-fit PK model. Chemico-Biological Interactions, 2020, 316, 108933.	4.0	4
6	Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opinion on Drug Metabolism and Toxicology, 2020, 16, 1109-1124.	3.3	20
7	Irinotecan-mediated diarrhea is mainly correlated with intestinal exposure to SN-38: Critical role of gut Ugt. Toxicology and Applied Pharmacology, 2020, 398, 115032.	2.8	19
8	Role of oxidative stress in the efficacy and toxicity of herbal supplements. Current Opinion in Toxicology, 2020, 20-21, 36-40.	5.0	7
9	Differential Regulation of Hepatic UDPâ€glucuronosyltransferase (UGT) 1A1 by Tollâ€like Receptors during Irinotecanâ€induced Steatosis. FASEB Journal, 2020, 34, 1-1.	0.5	1
10	Transcriptomic profiling identifies novel mechanisms of transcriptional regulation of the cytochrome P450 (Cyp)3a11 gene. Scientific Reports, 2019, 9, 6663.	3.3	14
11	Neratinib in HER2-Positive Breast Cancer Patients. Annals of Pharmacotherapy, 2019, 53, 612-620.	1.9	22
12	Role of c-Jun-N-Terminal Kinase in Pregnane X Receptor-Mediated Induction of Human Cytochrome P4503A4 In Vitro. Drug Metabolism and Disposition, 2018, 46, 397-404.	3.3	14
13	Impact of diet on irinotecan toxicity in mice. Chemico-Biological Interactions, 2018, 291, 87-94.	4.0	10
14	Role of Toll-like receptor 4 in drug-drug interaction between paclitaxel and irinotecan in vitro. Toxicology in Vitro, 2017, 41, 75-82.	2.4	7
15	Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics–small molecule drug interactions. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 605-616.	3.3	35
16	Clarifying busulfan metabolism and drug interactions to support new therapeutic drug monitoring strategies: a comprehensive review. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 901-923.	3.3	84
17	In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin. Methods in Molecular Biology, 2016, 1395, 55-68.	0.9	9
18	Impact of obesity on accumulation of the toxic irinotecan metabolite, SN-38, in mice. Life Sciences, 2015, 139, 132-138.	4.3	9

#	Article	IF	CITATIONS
19	Role of Adaptor Protein Toll-Like Interleukin Domain Containing Adaptor Inducing Interferon in Toll-Like Receptor 3- and 4-Mediated Regulation of Hepatic Drug Metabolizing Enzyme and Transporter Genes. Drug Metabolism and Disposition, 2015, 44, 61-67.	3.3	10
20	Role of Constitutive Androstane Receptor in Toll-Like Receptor-Mediated Regulation of Gene Expression of Hepatic Drug-Metabolizing Enzymes and Transporters. Drug Metabolism and Disposition, 2014, 42, 172-181.	3.3	31
21	Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice. Toxicology and Applied Pharmacology, 2013, 266, 430-438.	2.8	24
22	Drug Disposition in Pathophysiological Conditions. Current Drug Metabolism, 2012, 13, 1327-1344.	1.2	70
23	Impact of hepatic malignancy on CYP3A4 gene expression. Journal of Surgical Research, 2012, 178, 768-772.	1.6	5
24	Altered Drug Metabolism and Transport in Pathophysiological Conditions. , 2012, , .		2
25	Role of high-fat diet in regulation of gene expression of drug metabolizing enzymes and transporters. Life Sciences, 2011, 89, 57-64.	4.3	92
26	Differential Role of Toll-Interleukin 1 Receptor Domain-Containing Adaptor Protein in Toll-Like Receptor 2-Mediated Regulation of Gene Expression of Hepatic Cytokines and Drug-Metabolizing Enzymes. Drug Metabolism and Disposition, 2011, 39, 874-881.	3.3	33
27	Role of c-Jun N-terminal kinase (JNK) in regulating tumor necrosis factor-alpha (TNFALPHA.) mediated increase of acetaminophen (APAP) and chlorpromazine (CPZ) toxicity in murine hepatocytes. Journal of Toxicological Sciences, 2010, 35, 163-173.	1.5	38
28	Regulation of gene expression of hepatic drug metabolizing enzymes and transporters by the Toll-like receptor 2 ligand, lipoteichoic acid. Archives of Biochemistry and Biophysics, 2009, 481, 123-130.	3.0	32
29	Regulation of Hepatic Drug-Metabolizing Enzyme Genes by Toll-Like Receptor 4 Signaling Is Independent of Toll-Interleukin 1 Receptor Domain-Containing Adaptor Protein. Drug Metabolism and Disposition, 2008, 36, 95-101.	3.3	32
30	Rosiglitazone attenuates suppression of RXRÎ \pm -dependent gene expression in inflamed liver. Journal of Hepatology, 2007, 46, 115-123.	3.7	34
31	Nuclear Export of Retinoid X Receptor \hat{l}_{\pm} in Response to Interleukin- $1\hat{l}^2$ -mediated Cell Signaling. Journal of Biological Chemistry, 2006, 281, 15434-15440.	3.4	95
32	Restricted Specificity of Xenopus TFIIIA for Transcription of Somatic 5S rRNA Genes. Molecular and Cellular Biology, 2004, 24, 2467-2477.	2.3	8
33	Endotoxin leads to rapid subcellular re-localization of hepatic RXRalpha: A novel mechanism for reduced hepatic gene expression in inflammation. Nuclear Receptor, 2004, 2, 4.	10.0	127
34	Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2. Biochemical Journal, 2002, 362, 375.	3.7	10
35	Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2. Biochemical Journal, 2002, 362, 375-382.	3.7	9
36	Antiapoptotic Function of Cdk9 (TAK/P-TEFb) in U937 Promonocytic Cells. Journal of Virology, 2001, 75, 1220-1228.	3.4	48

Romi Ghose

#	Article	IF	CITATIONS
37	Induction of TAK (Cyclin T1/P-TEFb) in Purified Resting CD4 + T Lymphocytes by Combination of Cytokines. Journal of Virology, 2001, 75, 11336-11343.	3.4	99
38	Inhibition of RNA polymerase III transcription by a ribosome-associated kinase activity. Nucleic Acids Research, 1998, 26, 4758-4764.	14.5	4