
Matthew J Gamble

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12165024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation. ELife, 2022, 11, .	6.0	20
2	MacroH2A1.1 has evolved to let PARP1 do more by loosening its grip on PAR. Nature Structural and Molecular Biology, 2021, 28, 961-962.	8.2	0
3	MacroH2A1 Regulation of Poly(ADP-Ribose) Synthesis and Stability Prevents Necrosis and Promotes DNA Repair. Molecular and Cellular Biology, 2020, 40, .	2.3	30
4	H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14251-14258.	7.1	57
5	The macroH2A1.2 histone variant links ATRX loss to alternative telomere lengthening. Nature Structural and Molecular Biology, 2019, 26, 213-219.	8.2	36
6	Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition. Scientific Reports, 2018, 8, 841.	3.3	24
7	S100A4 regulates macrophage invasion by distinct myosin-dependent and myosin-independent mechanisms. Molecular Biology of the Cell, 2018, 29, 632-642.	2.1	21
8	MacroH2A1 chromatin specification requires its docking domain and acetylation of H2B lysine 20. Nature Communications, 2018, 9, 5143.	12.8	19
9	MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Molecular Cell, 2015, 59, 719-731.	9.7	170
10	MacroH2A1.1 and PARP-1 cooperate to regulate transcription by promoting CBP-mediated H2B acetylation. Nature Structural and Molecular Biology, 2014, 21, 981-989.	8.2	95
11	The Histone Variant MacroH2A1 Regulates Target Gene Expression in Part by Recruiting the Transcriptional Coregulator PELP1. Molecular and Cellular Biology, 2014, 34, 2437-2449.	2.3	18
12	Expanding the functional repertoire of macrodomains. Nature Structural and Molecular Biology, 2013, 20, 407-408.	8.2	3
13	Regulation of Poly(ADP-ribose) Polymerase-1-dependent Gene Expression through Promoter-directed Recruitment of a Nuclear NAD+ Synthase. Journal of Biological Chemistry, 2012, 287, 12405-12416.	3.4	96
14	QKI-Mediated Alternative Splicing of the Histone Variant MacroH2A1 Regulates Cancer Cell Proliferation. Molecular and Cellular Biology, 2011, 31, 4244-4255.	2.3	135
15	Genome-Wide Analysis Reveals PADI4 Cooperates with Elk-1 to Activate c-Fos Expression in Breast Cancer Cells. PLoS Genetics, 2011, 7, e1002112.	3.5	107
16	The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes and Development, 2010, 24, 21-32.	5.9	148
17	Multiple facets of the unique histone variant macroH2A: From genomics to cell biology. Cell Cycle, 2010, 9, 2568-2574.	2.6	76
18	Global Analysis of Transcriptional Regulation by Poly(ADP-ribose) Polymerase-1 and Poly(ADP-ribose) Glycohydrolase in MCF-7 Human Breast Cancer Cells. Journal of Biological Chemistry, 2009, 284, 33926-33938.	3.4	102

MATTHEW J GAMBLE

#	Article	IF	CITATIONS
19	Enzymes in the NAD+ Salvage Pathway Regulate SIRT1 Activity at Target Gene Promoters. Journal of Biological Chemistry, 2009, 284, 20408-20417.	3.4	200
20	Reciprocal Binding of PARP-1 and Histone H1 at Promoters Specifies Transcriptional Outcomes. Science, 2008, 319, 819-821.	12.6	350
21	Visualizing the Histone Code on LSD1. Cell, 2007, 128, 433-434.	28.9	12
22	SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nature Structural and Molecular Biology, 2007, 14, 548-555.	8.2	92
23	Dichotomous but stringent substrate selection by the dual-function Cdk7 complex revealed by chemical genetics. Nature Structural and Molecular Biology, 2006, 13, 55-62.	8.2	86
24	The Histone Chaperone TAF-I/SET/INHAT Is Required for Transcription In Vitro of Chromatin Templates. Molecular and Cellular Biology, 2005, 25, 797-807.	2.3	63