Richard J Gilbertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1216159/publications.pdf

Version: 2024-02-01

		7568	7160
170	29,525	77	153
papers	citations	h-index	g-index
4			
178	178	178	25897
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell, 2007, 11, 69-82.	16.8	1,994
2	Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 2012, 123, 465-472.	7.7	1,536
3	Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genetics, 2012, 44, 251-253.	21.4	1,402
4	Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell, 2015, 27, 728-743.	16.8	933
5	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 2012, 123, 473-484.	7.7	863
6	Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncology, The, 2006, 7, 813-820.	10.7	811
7	Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 2005, 8, 323-335.	16.8	758
8	Novel mutations target distinct subgroups of medulloblastoma. Nature, 2012, 488, 43-48.	27.8	742
9	Subtypes of medulloblastoma have distinct developmental origins. Nature, 2010, 468, 1095-1099.	27.8	710
10	Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nature Genetics, 2013, 45, 602-612.	21.4	704
11	Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nature Reviews Cancer, 2007, 7, 733-736.	28.4	645
12	The brain tumor microenvironment. Glia, 2012, 60, 502-514.	4.9	624
13	Genomics Identifies Medulloblastoma Subgroups That Are Enriched for Specific Genetic Alterations. Journal of Clinical Oncology, 2006, 24, 1924-1931.	1.6	617
14	Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature, 2009, 457, 603-607.	27.8	617
15	Integrative Genomic Analysis of Medulloblastoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome. Journal of Clinical Oncology, 2011, 29, 1424-1430.	1.6	609
16	Medulloblastomics: the end of the beginning. Nature Reviews Cancer, 2012, 12, 818-834.	28.4	560
17	C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature, 2014, 506, 451-455.	27.8	559
18	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	27.6	540

#	Article	IF	Citations
19	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014, 511, 428-434.	27.8	520
20	Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathologica, 2011, 121, 381-396.	7.7	474
21	The brain tumor microenvironment. Glia, 2011, 59, 1169-1180.	4.9	425
22	Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature Genetics, 2009, 41, 465-472.	21.4	391
23	Atypical Teratoid/Rhabdoid Tumors (ATRT): Improved Survival in Children 3 Years of Age and Older With Radiation Therapy and High-Dose Alkylator-Based Chemotherapy. Journal of Clinical Oncology, 2005, 23, 1491-1499.	1.6	384
24	Dual and opposing roles of primary cilia in medulloblastoma development. Nature Medicine, 2009, 15, 1062-1065.	30.7	370
25	Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog–Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. Journal of Clinical Oncology, 2015, 33, 2646-2654.	1.6	368
26	The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nature Communications, 2014, 5, 3630.	12.8	342
27	Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature, 2010, 466, 632-636.	27.8	324
28	Results of a Randomized Study of Preradiation Chemotherapy Versus Radiotherapy Alone for Nonmetastatic Medulloblastoma: The International Society of Paediatric Oncology/United Kingdom Children's Cancer Study Group PNET-3 Study. Journal of Clinical Oncology, 2003, 21, 1581-1591.	1.6	318
29	The <i>miR-17</i> â^¼ <i>92</i> cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2812-2817.	7.1	287
30	Medulloblastoma: signalling a change in treatment. Lancet Oncology, The, 2004, 5, 209-218.	10.7	276
31	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathologica, 2017, 133, 5-12.	7.7	271
32	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	10.7	268
33	Critical Role for the DNA Sensor AIM2 in Stem Cell Proliferation and Cancer. Cell, 2015, 162, 45-58.	28.9	266
34	DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature, 2019, 573, 590-594.	27.8	262
35	Clinical, Histopathologic, and Molecular Markers of Prognosis: Toward a New Disease Risk Stratification System for Medulloblastoma. Journal of Clinical Oncology, 2004, 22, 984-993.	1.6	261
36	The Origins of Medulloblastoma Subtypes. Annual Review of Pathology: Mechanisms of Disease, 2008, 3, 341-365.	22.4	255

#	Article	IF	CITATIONS
37	A Mouse Model of the Most Aggressive Subgroup of Human Medulloblastoma. Cancer Cell, 2012, 21, 168-180.	16.8	250
38	Wnt/Wingless Pathway Activation and Chromosome 6 Loss Characterise a Distinct Molecular Sub-Group of Medulloblastomas Associated with a Favourable Prognosis. Cell Cycle, 2006, 5, 2666-2670.	2.6	247
39	Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell, 2016, 29, 508-522.	16.8	226
40	Clinical and Molecular Characteristics of Malignant Transformation of Low-Grade Glioma in Children. Journal of Clinical Oncology, 2007, 25, 682-689.	1.6	200
41	Gefitinib Enhances the Antitumor Activity and Oral Bioavailability of Irinotecan in Mice. Cancer Research, 2004, 64, 7491-7499.	0.9	193
42	Phase I Study of Vismodegib in Children with Recurrent or Refractory Medulloblastoma: A Pediatric Brain Tumor Consortium Study. Clinical Cancer Research, 2013, 19, 6305-6312.	7.0	180
43	Lack of Efficacy of Bevacizumab Plus Irinotecan in Children With Recurrent Malignant Glioma and Diffuse Brainstem Glioma: A Pediatric Brain Tumor Consortium Study. Journal of Clinical Oncology, 2010, 28, 3069-3075.	1.6	178
44	Pediatric Phase I Trial and Pharmacokinetic Study of Vorinostat: A Children's Oncology Group Phase I Consortium Report. Journal of Clinical Oncology, 2010, 28, 3623-3629.	1.6	174
45	clMPACTâ€NOW update 7: advancing the molecular classification of ependymal tumors. Brain Pathology, 2020, 30, 863-866.	4.1	168
46	Regression of Experimental Medulloblastoma following Transfer of HER2-Specific T Cells. Cancer Research, 2007, 67, 5957-5964.	0.9	153
47	Phase I Trial of MK-0752 in Children With Refractory CNS Malignancies: A Pediatric Brain Tumor Consortium Study. Journal of Clinical Oncology, 2011, 29, 3529-3534.	1.6	151
48	The Choroid Plexus and Cerebrospinal Fluid: Emerging Roles in Development, Disease, and Therapy. Journal of Neuroscience, 2013, 33, 17553-17559.	3.6	151
49	Risk-adapted therapy for young children with medulloblastoma (SJYCO7): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncology, The, 2018, 19, 768-784.	10.7	151
50	Phase I Study of Everolimus in Pediatric Patients With Refractory Solid Tumors. Journal of Clinical Oncology, 2007, 25, 4806-4812.	1.6	149
51	A molecular fingerprint for medulloblastoma. Cancer Research, 2003, 63, 5428-37.	0.9	149
52	A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathologica, 2012, 123, 727-738.	7.7	148
53	Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. Journal of Neuroscience Research, 2008, 86, 48-60.	2.9	144
54	ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clinical Cancer Research, 2002, 8, 3054-64.	7.0	141

#	Article	IF	CITATIONS
55	The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation. Genes and Development, 2005, 19, 2656-2667.	5.9	133
56	Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas—a Pediatric Brain Tumor Consortium study. Neuro-Oncology, 2014, 16, 310-317.	1.2	132
57	Multi-organ Mapping of Cancer Risk. Cell, 2016, 166, 1132-1146.e7.	28.9	128
58	ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Research, 2003, 63, 140-8.	0.9	125
59	Molecular Insights into Pediatric Brain Tumors Have the Potential to Transform Therapy. Clinical Cancer Research, 2014, 20, 5630-5640.	7.0	124
60	Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Scientific Reports, 2016, 6, 25996.	3.3	121
61	Molecular Characterization of the Pediatric Preclinical Testing Panel. Clinical Cancer Research, 2008, 14, 4572-4583.	7.0	116
62	WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development (Cambridge), 2012, 139, 1724-1733.	2.5	115
63	Pediatric Phase I and Pharmacokinetic Study of Erlotinib Followed by the Combination of Erlotinib and Temozolomide: A Children's Oncology Group Phase I Consortium Study. Journal of Clinical Oncology, 2008, 26, 4921-4927.	1.6	113
64	ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clinical Cancer Research, 2003, 9, 3620-4.	7.0	112
65	Copy Number Gain of 1925 Predicts Poor Progression-Free Survival for Pediatric Intracranial Ependymomas and Enables Patient Risk Stratification: A Prospective European Clinical Trial Cohort Analysis on Behalf of the Children's Cancer Leukaemia Group (CCLG), Société Française d'Oncologie Pédiatrique (SFOP), and International Society for Pediatric Oncology (SIOP). Clinical Cancer Research,	7.0	111
66	The G protein α subunit Gαs is a tumor suppressor in Sonic hedgehogâ^'driven medulloblastoma. Nature Medicine, 2014, 20, 1035-1042.	30.7	110
67	Phase I Study of Vandetanib During and After Radiotherapy in Children With Diffuse Intrinsic Pontine Glioma. Journal of Clinical Oncology, 2010, 28, 4762-4768.	1.6	108
68	A Phase I Study of 17-Allylaminogeldanamycin in Relapsed/Refractory Pediatric Patients with Solid Tumors: A Children's Oncology Group Study. Clinical Cancer Research, 2007, 13, 1789-1793.	7.0	106
69	Outcomes by Clinical and Molecular Features in Children With Medulloblastoma Treated With Risk-Adapted Therapy: Results of an International Phase III Trial (SJMB03). Journal of Clinical Oncology, 2021, 39, 822-835.	1.6	106
70	An Integrated InÂVitro and InÂVivo High-Throughput Screen Identifies Treatment Leads for Ependymoma. Cancer Cell, 2011, 20, 384-399.	16.8	105
71	PDGFRB is overexpressed in metastatic medulloblastoma. Nature Genetics, 2003, 35, 197-198.	21.4	99
72	Siah Regulation of Pard3A Controls Neuronal Cell Adhesion During Germinal Zone Exit. Science, 2010, 330, 1834-1838.	12.6	92

#	Article	IF	Citations
73	What's new in neuro-oncology? Recent advances in medulloblastoma. European Journal of Paediatric Neurology, 2003, 7, 53-66.	1.6	90
74	Multifactorial analysis of predictors of outcome in pediatric intracranial ependymoma. Neuro-Oncology, 2008, 10, 675-689.	1.2	90
75	Phase I Study of Temsirolimus in Pediatric Patients With Recurrent/Refractory Solid Tumors. Journal of Clinical Oncology, 2011, 29, 2933-2940.	1.6	89
76	Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis, 2003, 25, 661-668.	2.8	86
77	Molecular Characterization of Choroid Plexus Tumors Reveals Novel Clinically Relevant Subgroups. Clinical Cancer Research, 2015, 21, 184-192.	7.0	84
78	A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat. Acta Neuropathologica, 2011, 122, 637-650.	7.7	77
79	Cross-Species Genomics Identifies TAF12, NFYC, and RAD54L as Choroid Plexus Carcinoma Oncogenes. Cancer Cell, 2015, 27, 712-727.	16.8	74
80	Resolving the stem-cell debate. Nature, 2012, 488, 462-463.	27.8	73
81	Phase I Trial of Lapatinib in Children With Refractory CNS Malignancies: A Pediatric Brain Tumor Consortium Study. Journal of Clinical Oncology, 2010, 28, 4221-4227.	1.6	71
82	A pilot study of risk-adapted radiotherapy and chemotherapy in patients with supratentorial PNET. Neuro-Oncology, 2009, 11 , 33-40.	1.2	69
83	Rapid Diagnosis of Medulloblastoma Molecular Subgroups. Clinical Cancer Research, 2011, 17, 1883-1894.	7.0	69
84	Impact of radiotherapy parameters on outcome in the International Society of Paediatric Oncology/United Kingdom Children's Cancer Study Group PNET-3 study of preradiotherapy chemotherapy for M0-M1 medulloblastoma. International Journal of Radiation Oncology Biology Physics, 2004, 58, 1184-1193.	0.8	68
85	A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: A children's oncology group phase 1 consortium study. Pediatric Blood and Cancer, 2013, 60, 1452-1457.	1.5	68
86	Genetic Alterations in Mouse Medulloblastomas and Generation of Tumors De novo from Primary Cerebellar Granule Neuron Precursors. Cancer Research, 2007, 67, 2676-2684.	0.9	66
87	Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes. International Journal of Cancer, 2009, 124, 109-119.	5.1	66
88	Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer Cell, 2021, 39, 1519-1530.e4.	16.8	64
89	The TP53-ARF tumor suppressor pathway is frequently disrupted in large/cell anaplastic medulloblastoma. Molecular Brain Research, 2004, 121, 137-140.	2.3	62
90	Tumorigenesis in the Brain: Location, Location, Location: Figure 1 Cancer Research, 2007, 67, 5579-5582.	0.9	62

#	Article	IF	Citations
91	An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nature Genetics, 2015, 47, 878-887.	21.4	62
92	A phase I and biology study of gefitinib and radiation in children with newly diagnosed brain stem gliomas or supratentorial malignant gliomas. European Journal of Cancer, 2010, 46, 3287-3293.	2.8	59
93	Epigenetic inactivation ofMCJ (DNAJD1) in malignant paediatric brain tumours. International Journal of Cancer, 2006, 118, 346-352.	5.1	57
94	A molecular biology and phase II trial of lapatinib in children with refractory CNS malignancies: a pediatric brain tumor consortium study. Journal of Neuro-Oncology, 2013, 114, 173-179.	2.9	55
95	NovelERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes Chromosomes and Cancer, 2001, 31, 288-294.	2.8	53
96	Histological Predictors of Outcome in Ependymoma are Dependent on Anatomic Site Within the Central Nervous System. Brain Pathology, 2013, 23, 584-594.	4.1	53
97	A De Novo Mouse Model of C11orf95-RELA Fusion-Driven Ependymoma Identifies Driver Functions in Addition to NF-κB. Cell Reports, 2018, 23, 3787-3797.	6.4	53
98	Global analysis of the medulloblastoma epigenome identifies disease-subgroup-specific inactivation of COL1A2. Neuro-Oncology, 2008, 10, 981-994.	1.2	52
99	An open-label, two-stage, phase II study of bevacizumab and lapatinib in children with recurrent or refractory ependymoma: a collaborative ependymoma research network study (CERN). Journal of Neuro-Oncology, 2015, 123, 85-91.	2.9	52
100	Lack of efficacy of bevacizumab + irinotecan in cases of pediatric recurrent ependymoma-a Pediatric Brain Tumor Consortium study. Neuro-Oncology, 2012, 14, 1404-1412.	1.2	50
101	mTORC1-Mediated Inhibition of 4EBP1 Is Essential for Hedgehog Signaling-Driven Translation and Medulloblastoma. Developmental Cell, 2017, 43, 673-688.e5.	7.0	48
102	Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis. Genes and Development, 2020, 34, 1051-1064.	5.9	48
103	Mapping Cancer Origins. Cell, 2011, 145, 25-29.	28.9	47
104	DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma. Developmental Cell, 2020, 54, 455-470.e5.	7.0	47
105	ZFTA–RELA Dictates Oncogenic Transcriptional Programs to Drive Aggressive Supratentorial Ependymoma. Cancer Discovery, 2021, 11, 2200-2215.	9.4	46
106	UPLC-MS-ELSD-PDA as a Powerful Dereplication Tool to Facilitate Compound Identification from Small-Molecule Natural Product Libraries. Journal of Natural Products, 2014, 77, 902-909.	3.0	41
107	Phase I trial of weekly MK-0752 in children with refractory central nervous system malignancies: a pediatric brain tumor consortium study. Child's Nervous System, 2015, 31, 1283-1289.	1.1	41
108	Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas. Cancer Discovery, 2021, 11, 2230-2247.	9.4	39

#	Article	IF	Citations
109	Identification of interleukin-13 receptor $\hat{l}\pm2$ chain overexpression in situ in high-grade diffusely infiltrative pediatric brainstem glioma. Neuro-Oncology, 2008, 10, 265-274.	1.2	38
110	Pten deletion causes mTorc1-dependent ectopic neuroblast differentiation without causing uniform migration defects. Development (Cambridge), 2012, 139, 3422-3431.	2.5	37
111	A novel <i>Atg5</i> -shRNA mouse model enables temporal control of Autophagy <i>in vivo</i> . Autophagy, 2018, 14, 1256-1266.	9.1	35
112	Mutational analysis of PDGFR–RAS/MAPK pathway activation in childhood medulloblastoma. European Journal of Cancer, 2006, 42, 646-649.	2.8	34
113	<i>TP53</i> Mutations in Favorable-Risk Wnt/Wingless-Subtype Medulloblastomas. Journal of Clinical Oncology, 2011, 29, e344-e346.	1.6	33
114	Bevacizumab (BVZ)â€associated toxicities in children with recurrent central nervous system tumors treated with BVZ and irinotecan (CPTâ€11). Cancer, 2013, 119, 4180-4187.	4.1	33
115	Continuous Delivery of IFN- \hat{l}^2 Promotes Sustained Maturation of Intratumoral Vasculature. Molecular Cancer Research, 2007, 5, 531-542.	3.4	32
116	<i>ZFTA</i> Translocations Constitute Ependymoma Chromatin Remodeling and Transcription Factors. Cancer Discovery, 2021, 11, 2216-2229.	9.4	32
117	Assessing telomeric DNA content in pediatric cancers using whole-genome sequencing data. Genome Biology, 2012, 13, R113.	9.6	31
118	Mechanically matching the rheological properties of brain tissue for drug-delivery in human glioblastoma models. Biomaterials, 2021, 276, 120919.	11.4	31
119	Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas. Science Translational Medicine, 2021, 13, eabc0497.	12.4	29
120	Medulloblastoma Sensitivity to 17-Allylamino-17-demethoxygeldanamycin Requires MEK/ERK. Journal of Biological Chemistry, 2003, 278, 24951-24959.	3.4	28
121	Molecular Biology of Medulloblastoma: Will It Ever Make a Difference to Clinical Management?. Journal of Neuro-Oncology, 2005, 75, 273-278.	2.9	27
122	ERBB2 in Pediatric Cancer: Innocent Until Proven Guilty. Oncologist, 2005, 10, 508-517.	3.7	27
123	Maturation Block in Childhood Cancer. Cancer Discovery, 2021, 11, 542-544.	9.4	25
124	Phase I study of 5-fluorouracil in children and young adults with recurrent ependymoma. Neuro-Oncology, 2015, 17, 1620-1627.	1.2	24
125	Cancer Treatment in the Genomic Era. Annual Review of Biochemistry, 2019, 88, 247-280.	11.1	24
126	DNA methylation signature is prognostic of choroid plexus tumor aggressiveness. Clinical Epigenetics, 2019, 11, 117.	4.1	21

#	Article	lF	Citations
127	Brain Tumors: Challenges and Opportunities to Cure. Journal of Clinical Oncology, 2017, 35, 2343-2345.	1.6	18
128	Brain Tumors Provide New Clues to the Source of Cancer Stem Cells: Does Oncology Recapitulate Ontogeny?. Cell Cycle, 2006, 5, 135-137.	2.6	17
129	A procedure to statistically evaluate agreement of differential expression for cross-species genomics. Bioinformatics, 2011, 27, 2098-2103.	4.1	16
130	Molecular profiling of pediatric brain tumors: Insight into biology and treatment. Current Oncology Reports, 2009, 11 , $68-72$.	4.0	15
131	Myc and Loss of p53 Cooperate to Drive Formation of Choroid Plexus Carcinoma. Cancer Research, 2019, 79, 2208-2219.	0.9	15
132	Defining future directions in spinal cord tumor research. Journal of Neurosurgery: Spine, 2010, 12, 117-121.	1.7	14
133	A phase 1 and pharmacokinetic study of enzastaurin in pediatric patients with refractory primary central nervous system tumors: a pediatric brain tumor consortium study. Neuro-Oncology, 2015, 17, 303-311.	1.2	14
134	Primary cilia control translation and the cell cycle in medulloblastoma. Genes and Development, 2022, 36, 737-751.	5 . 9	14
135	Establishing a Preclinical Multidisciplinary Board for Brain Tumors. Clinical Cancer Research, 2018, 24, 1654-1666.	7.0	12
136	Preclinical studies of 5-fluoro-2′-deoxycytidine and tetrahydrouridine in pediatric brain tumors. Journal of Neuro-Oncology, 2016, 126, 225-234.	2.9	11
137	The Niche Revealed. Cell Stem Cell, 2008, 3, 234-236.	11.1	10
138	To Infinium, and Beyond!. Cancer Cell, 2010, 17, 419-420.	16.8	10
139	Preclinical Modeling of Image-Guided Craniospinal Irradiation for Very-High-Risk Medulloblastoma. International Journal of Radiation Oncology Biology Physics, 2019, 103, 728-737.	0.8	10
140	Exome sequencing analysis of murine medulloblastoma models identifies WDR11 as a potential tumor suppressor in Group 3 tumors. Oncotarget, 2017, 8, 64685-64697.	1.8	10
141	Driving Glioblastoma to Drink. Cell, 2014, 157, 289-290.	28.9	9
142	Preclinical examination of clofarabine in pediatric ependymoma: intratumoral concentrations insufficient to warrant further study. Cancer Chemotherapy and Pharmacology, 2015, 75, 897-906.	2.3	8
143	A prospective phase II study to determine the efficacy of GDC 0449 (vismodegib) in adults with recurrent medulloblastoma (MB): A Pediatric Brain Tumor Consortium study (PBTC 25B) Journal of Clinical Oncology, 2013, 31, 2035-2035.	1.6	8
144	High-grade glioma: Can we teach an old dogma new tricks?. Cancer Cell, 2006, 9, 147-148.	16.8	5

#	Article	IF	Citations
145	Multiomic Medulloblastomas. Cancer Cell, 2018, 34, 351-353.	16.8	5
146	There's a Time and a Place for MYCN. Cancer Cell, 2012, 21, 593-595.	16.8	4
147	Harnessing brain development to understand brain tumours. Development (Cambridge), 2021, 148, .	2.5	4
148	Finding the Perfect Partner for Medulloblastoma Prognostication. Journal of Clinical Oncology, 2011, 29, 3841-3842.	1.6	3
149	Simvastatin Hydroxy Acid Fails to Attain Sufficient Central Nervous System Tumor Exposure to Achieve a Cytotoxic Effect: Results of a Preclinical Cerebral Microdialysis Study. Drug Metabolism and Disposition, 2016, 44, 591-594.	3.3	3
150	Highlights of Children with Cancer UK's Workshop on Drug Delivery in Paediatric Brain Tumours. Ecancermedicalscience, 2016, 10, 630.	1.1	2
151	Brain Cancer Stem Cells as Targets of Novel Therapies. , 2009, , 1057-1075.		2
152	Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 2006, 9, 70.	16.8	1
153	C11ORF95-RELA FUSIONS DRIVE ONCOGENIC NF-KB SIGNALING IN EPENDYMOMA. Neuro-Oncology, 2014, 16, iii16-iii16.	1.2	1
154	EPEN-03. ZFTA/C11ORF95 FUSIONS DRIVE SUPRATENTORIAL EPENDYMOMA VIA SHARED ONCOGENIC MECHANISMS. Neuro-Oncology, 2021, 23, i13-i14.	1.2	1
155	Developing treatment strategies for rare cancers. Oncotarget, 2011, 2, 657-657.	1.8	1
156	MPTH-26MOLECULAR REFINEMENT OF PEDIATRIC POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2015, 17, v144.1-v144.	1.2	0
157	TMOD-13GENETICALLY ENGINEERED MOUSE MODELS OF CHOROID PLEXUS TUMORS. Neuro-Oncology, 2015, 17, v228.4-v229.	1.2	O
158	PCM-01DIFFERENTIAL RESPONSES OF MURINE MODELS OF SUPRATENTORIAL EPENDYMOMA TO GEMCITABINE AS MEASURED BY MRI AND PET-CT. Neuro-Oncology, 2016, 18, iii139.1-iii139.	1.2	0
159	PCM-06ACCURATE PRECLINICAL TRIALS OF NEW EPENDYMOMA THERAPIES. Neuro-Oncology, 2016, 18, iii140.2-iii140.	1.2	О
160	PCM-22A NEW APPROACH OF PRECLINICAL TESTING OF CHEMOTHERAPIES - AN EXAMPLE OF BRAIN TUMOUR THERAPY. Neuro-Oncology, 2016, 18, iii144-iii144.	1.2	0
161	MB-32MEDULLOBLASTOMA GENOTYPE DICTATES BLOOD BRAIN BARRIER PHENOTYPE. Neuro-Oncology, 2016, 18, iii104.1-iii104.	1.2	O
162	MBCL-44. THE MOLECULAR AND CLINICAL LANDSCAPE OF INFANT MEDULLOBLASTOMA (iMB): RESULTS AND MOLECULAR ANALYSIS FROM A PROSPECTIVE, MULTICENTER PHASE II TRIAL (SJYC07). Neuro-Oncology, 2018, 20, i126-i127.	1.2	0

#	ARTICLE	lF	CITATIONS
163	Reply to â€~Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	27.6	O
164	Advances and Challenges in Pediatric and Childhood Cancers. Cancer Cell, 2020, 38, 429-432.	16.8	0
165	Future Treatments of Ependymoma. , 2010, , 291-304.		O
166	Abstract 4759: Integrated in vitro and in vivo screening of tumor and normal neural stem cells identifies potential new treatments of ependymoma., $2011, \dots$		0
167	Abstract 1434: A mouse model of the most aggressive subgroup of human medulloblastoma. , 2012, , .		O
168	Use of whole genome sequencing to identify novel mutations in distinct subgroups of medulloblastoma Journal of Clinical Oncology, 2012, 30, 9518-9518.	1.6	0
169	Pten deletion causes mTorc1-dependent ectopic neuroblast differentiation without causing uniform migration defects. Journal of Cell Science, 2012, 125, e1-e1.	2.0	O
170	PATH-04. Array-based global DNA Methylation profiling of mouse brain tumors allows comparison to human tumors. Neuro-Oncology, 2022, 24, i158-i159.	1.2	0