Marco J Herold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1216070/publications.pdf

Version: 2024-02-01

48315 61984 8,719 119 43 88 citations h-index g-index papers 130 130 130 14460 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Absence of pro-survival A1 has no impact on inflammatory cell survival in vivo during acute lung inflammation and peritonitis. Cell Death and Differentiation, 2022, 29, 96-104.	11.2	7
2	<i>In vivo</i> genomeâ€editing screen identifies tumor suppressor genes that cooperate with <i>Trp53</i> loss during mammary tumorigenesis. Molecular Oncology, 2022, 16, 1119-1131.	4.6	6
3	Loss of TRP53 reduces but does not overcome dependency of lymphoma cells on MCL-1. Cell Death and Differentiation, 2022, 29, 1074-1076.	11.2	3
4	Interferon- \hat{I}^3 primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity, 2022, 55, 423-441.e9.	14.3	61
5	Removal of BFL-1 sensitises some melanoma cells to killing by BH3 mimetic drugs. Cell Death and Disease, 2022, 13, 301.	6.3	1
6	Case Study: CRISPR 101 $\hat{a} \in \hat{a}$ a novel online learning course harnessing innovative ways to teach a complex biomolecular technology. Essays in Biochemistry, 2022, , .	4.7	1
7	Ubiquitin-like protein 3 (UBL3) is required for MARCH ubiquitination of major histocompatibility complex class II and CD86. Nature Communications, 2022, 13, 1934.	12.8	13
8	Ubiquitylation of RIPK3 beyond-the-RHIM can limit RIPK3 activity and cell death. IScience, 2022, 25, 104632.	4.1	3
9	Epigenetic modulators of B cell fate identified through coupled phenotype-transcriptome analysis. Cell Death and Differentiation, 2022, 29, 2519-2530.	11.2	5
10	The transcription factor IRF4 represses proapoptotic BMF and BIM to licence multiple myeloma survival. Leukemia, 2021, 35, 2114-2118.	7.2	18
11	CRISPR base editing applications for identifying cancer-driving mutations. Biochemical Society Transactions, 2021, 49, 269-280.	3.4	8
12	Myelodysplasia Syndrome, Clonal Hematopoiesis and Cardiovascular Disease. Cancers, 2021, 13, 1968.	3.7	9
13	Ptpn2 and KLRG1 regulate the generation and function of tissue-resident memory CD8+ T cells in skin. Journal of Experimental Medicine, 2021, 218, .	8.5	12
14	PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Medicine, 2021, 13, 58.	8.2	62
15	The ubiquitylation of IL- $\hat{\Pi}^2$ limits its cleavage by caspase-1 and targets it for proteasomal degradation. Nature Communications, 2021, 12, 2713.	12.8	40
16	BCL-XL antagonism selectively reduces neutrophil life span within inflamed tissues without causing neutropenia. Blood Advances, 2021, 5, 2550-2562.	5.2	9
17	Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity, 2021, 54, 1758-1771.e7.	14.3	46
18	Caspase-2 does not play a critical role in cell death induction and bacterial clearance during Salmonella infection. Cell Death and Differentiation, 2021, 28, 3371-3373.	11.2	2

#	Article	IF	Citations
19	Targeting Control of Cell Cycle Enhances the Activity of Conventional Chemotherapy in Chemotherapy-Resistant Acute Myeloid Leukemia. Blood, 2021, 138, 2241-2241.	1.4	0
20	ROCK1 but not LIMK1 or PAK2 is a key regulator of apoptotic membrane blebbing and cell disassembly. Cell Death and Differentiation, 2020, 27, 102-116.	11.2	40
21	miR17~92 restrains pro-apoptotic BIM to ensure survival of haematopoietic stem and progenitor cells. Cell Death and Differentiation, 2020, 27, 1475-1488.	11.2	9
22	Modeling Breast Cancer Using CRISPR-Cas9–Mediated Engineering of Human Breast Organoids. Journal of the National Cancer Institute, 2020, 112, 540-544.	6.3	104
23	EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death and Differentiation, 2020, 27, 1554-1568.	11.2	35
24	Characterization of a novel human BFL-1-specific monoclonal antibody. Cell Death and Differentiation, 2020, 27, 826-828.	11.2	2
25	Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature, 2020, 577, 103-108.	27.8	198
26	Potent efficacy of MCL-1 inhibitor-based therapies in preclinical models of mantle cell lymphoma. Oncogene, 2020, 39, 2009-2023.	5.9	16
27	Consequences of Zmat3 loss in c-MYC- and mutant KRAS-driven tumorigenesis. Cell Death and Disease, 2020, 11, 877.	6.3	7
28	TREML4 receptor regulates inflammation and innate immune cell death during polymicrobial sepsis. Nature Immunology, 2020, 21, 1585-1596.	14.5	36
29	Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. European Journal of Immunology, 2020, 50, 1871-1884.	2.9	6
30	Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection. Immunity, 2020, 53, 533-547.e7.	14.3	98
31	Emerging connectivity of programmed cell death pathways and its physiological implications. Nature Reviews Molecular Cell Biology, 2020, 21, 678-695.	37.0	465
32	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	14.5	110
33	HBO1 (KAT7) Does Not Have an Essential Role in Cell Proliferation, DNA Replication, or Histone 4 Acetylation in Human Cells. Molecular and Cellular Biology, 2020, 40, .	2.3	16
34	Targeting platelets for improved outcome in KRAS-driven lung adenocarcinoma. Oncogene, 2020, 39, 5177-5186.	5.9	5
35	An Erg-driven transcriptional program controls B cell lymphopoiesis. Nature Communications, 2020, 11, 3013.	12.8	29
36	The pro-survival Bcl-2 family member A1 delays spontaneous and FAS ligand-induced apoptosis of activated neutrophils. Cell Death and Disease, 2020, 11, 474.	6.3	6

#	Article	IF	CITATIONS
37	Dual Targeting of CDK4/6 and BCL2 Pathways Augments Tumor Response in Estrogen Receptor–Positive Breast Cancer. Clinical Cancer Research, 2020, 26, 4120-4134.	7.0	65
38	A Hypomorphic Dars1D367Y Model Recapitulates Key Aspects of the Leukodystrophy HBSL. Frontiers in Cellular Neuroscience, 2020, 14, 625879.	3.7	6
39	Therapeutic blockade of CXCR2 rapidly clears inflammation in arthritis and atopic dermatitis models: demonstration with surrogate and humanized antibodies. MAbs, 2020, 12, 1856460.	5.2	13
40	Acquired Mutations in BAX Confer Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Blood, 2020, 136, 7-8.	1.4	13
41	BCLâ€XL exerts a protective role against anemia caused by radiationâ€induced kidney damage. EMBO Journal, 2020, 39, e105561.	7.8	7
42	TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death and Differentiation, 2019, 26, 902-917.	11.2	42
43	Single-Cell Transcriptomics Identifies the Adaptation of Scart1+ $\hat{V^{3}}$ 6+ T Cells to Skin Residency as Activated Effector Cells. Cell Reports, 2019, 27, 3657-3671.e4.	6.4	79
44	BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death and Disease, 2019, 10, 342.	6.3	125
45	Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects. Cell Reports, 2019, 27, 442-454.e5.	6.4	37
46	Characterisation of mice lacking the inflammatory caspases-1/11/12 reveals no contribution of caspase-12 to cell death and sepsis. Cell Death and Differentiation, 2019, 26, 1124-1137.	11.2	23
47	Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity, 2019, 50, 77-90.e5.	14.3	59
48	Loss of IRF4 Results in Multiple Myeloma Cell Apoptosis through the Transcriptional up-Regulation of the BH3-Only Proteins Bmf and BIM. Blood, 2019, 134, 3103-3103.	1.4	2
49	Anti-apoptotic A1 is not essential for lymphoma development in EÂμ-Myc mice but helps sustain transplanted EÂμ-Myc tumour cells. Cell Death and Differentiation, 2018, 25, 797-808.	11.2	15
50	CRISPR/Cas9: A tool for immunological research. European Journal of Immunology, 2018, 48, 576-583.	2.9	19
51	Coordinated repression of BIM and PUMA by Epstein–Barr virus latent genes maintains the survival of Burkitt lymphoma cells. Cell Death and Differentiation, 2018, 25, 241-254.	11.2	20
52	Loss of NF-κB1 Causes Gastric Cancer with Aberrant Inflammation and Expression of Immune Checkpoint Regulators in a STAT-1-Dependent Manner. Immunity, 2018, 48, 570-583.e8.	14.3	61
53	How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?. Cell Death and Differentiation, 2018, 25, 104-113.	11.2	820
54	VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nature Communications, 2018, 9, 4976.	12.8	110

#	Article	IF	CITATIONS
55	A point mutation in the $\langle i \rangle Ncr1 \langle i \rangle$ signal peptide impairs the development of innate lymphoid cell subsets. Oncolmmunology, 2018, 7, e1475875.	4.6	9
56	Foxp1 Is Indispensable for Ductal Morphogenesis and Controls the Exit of Mammary Stem Cells from Quiescence. Developmental Cell, 2018, 47, 629-644.e8.	7.0	24
57	Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use. Blood, 2018, 132, 1573-1583.	1.4	67
58	GM-CSF Quantity Has a Selective Effect on Granulocytic vs. Monocytic Myeloid Development and Function. Frontiers in Immunology, 2018, 9, 1922.	4.8	29
59	MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE, 2018, 13, e0200540.	2.5	29
60	Mining the Plasma Cell Transcriptome for Novel Cell Surface Proteins. International Journal of Molecular Sciences, 2018, 19, 2161.	4.1	17
61	DNA repair processes are critical mediators of p53-dependent tumor suppression. Nature Medicine, 2018, 24, 947-953.	30.7	122
62	Identification of Genetic Pathways Controlling Resistance to Standard Combination Chemotherapy in Acute Myeloid Leukemia. Blood, 2018, 132, 2771-2771.	1.4	0
63	<scp>MDM4</scp> is a rational target for treating breast cancers with mutant p53. Journal of Pathology, 2017, 241, 661-670.	4.5	32
64	Combination of IAP antagonist and IFN \hat{I}^3 activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death and Differentiation, 2017, 24, 481-491.	11.2	43
65	The BCL-2 pro-survival protein A1 is dispensable for T cell homeostasis on viral infection. Cell Death and Differentiation, 2017, 24, 523-533.	11.2	29
66	Characterisation of mice lacking all functional isoforms of the pro-survival BCL-2 family member A1 reveals minor defects in the haematopoietic compartment. Cell Death and Differentiation, 2017, 24, 534-545.	11.2	60
67	A nonâ€canonical function of Ezh2 preserves immune homeostasis. EMBO Reports, 2017, 18, 619-631.	4.5	7 3
68	DR5 and caspase-8 are dispensable in ER stress-induced apoptosis. Cell Death and Differentiation, 2017, 24, 944-950.	11.2	65
69	Synergistic targeting of breast cancer stemâ€like cells by human γδT cells and CD8 ⁺ T cells. Immunology and Cell Biology, 2017, 95, 620-629.	2.3	51
70	Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death and Differentiation, 2017, 24, 878-888.	11.2	103
71	DNA-binding of the Tet-transactivator curtails antigen-induced lymphocyte activation in mice. Nature Communications, 2017, 8, 1028.	12.8	8
72	Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Science Translational Medicine, 2017, 9, .	12.4	148

#	Article	IF	CITATIONS
73	An update on using CRISPR/Cas9 in the one-cell stage mouse embryo for generating complex mutant alleles. Cell Death and Differentiation, 2017, 24, 1821-1822.	11.2	38
74	The combination of reduced MCL-1 and standard chemotherapeutics is tolerable in mice. Cell Death and Differentiation, 2017, 24, 2032-2043.	11.2	25
75	Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. ELife, 2016, 5, .	6.0	65
76	Male sterility in Mcl-1-flox mice is not due to enhanced Mcl1 protein stability. Cell Death and Disease, 2016, 7, e2490-e2490.	6.3	3
77	Using CRISPR/Cas9 Technology for Manipulating Cell Death Regulators. Methods in Molecular Biology, 2016, 1419, 253-264.	0.9	23
78	Hepatocyte growth factor renders BRAF mutant human melanoma cell lines resistant to PLX4032 by downregulating the pro-apoptotic BH3-only proteins PUMA and BIM. Cell Death and Differentiation, 2016, 23, 2054-2062.	11.2	24
79	Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1. Blood, 2016, 128, 1834-1844.	1.4	127
80	RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice. Journal of Experimental Medicine, 2016, 213, 2039-2048.	8.5	13
81	The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature, 2016, 538, 477-482.	27.8	830
82	BET inhibition represses miR17-92 to drive BIM-initiated apoptosis of normal and transformed hematopoietic cells. Leukemia, 2016, 30, 1531-1541.	7.2	29
83	Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells. Cell Reports, 2016, 14, 1858-1866.	6.4	35
84	Mutant p53 Enhances the Development and Sustained Growth of MYC-Driven Lymphoma and Exerts a Dominant Negative Effect Preferentially Deregulating Pathways for Metabolism and DNA Repair. Blood, 2016, 128, 1545-1545.	1.4	0
85	NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspaseâ€4 and caspaseâ€5. European Journal of Immunology, 2015, 45, 2918-2926.	2.9	283
86	Prosurvival Bcl-2 family members reveal a distinct apoptotic identity between conventional and plasmacytoid dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4044-4049.	7.1	43
87	An Inducible Lentiviral Guide RNA Platform Enables the Identification of Tumor-Essential Genes and Tumor-Promoting Mutations InÂVivo. Cell Reports, 2015, 10, 1422-1432.	6.4	337
88	Impact of conditional deletion of the pro-apoptotic BCL-2 family member BIM in mice. Cell Death and Disease, 2014, 5, e1446-e1446.	6.3	25
89	Evidence against upstream regulation of the unfolded protein response (UPR) by pro-apoptotic BIM and PUMA. Cell Death and Disease, 2014, 5, e1354-e1354.	6.3	8
90	Characterisation of a novel A1-specific monoclonal antibody. Cell Death and Disease, 2014, 5, e1553-e1553.	6.3	16

#	Article	lF	CITATIONS
91	Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production. Cell, 2014, 159, 1549-1562.	28.9	698
92	Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and Intrinsic Death Pathways. Immunity, 2014, 41, 947-959.	14.3	121
93	Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in <i>p53</i> . Genes and Development, 2014, 28, 58-70.	5.9	156
94	It's not over until the FAT lady sings. EMBO Journal, 2014, 33, n/a-n/a.	7.8	0
95	Pro-apoptotic BIM is an essential initiator of physiological endothelial cell death independent of regulation by FOXO3. Cell Death and Differentiation, 2014, 21, 1687-1695.	11.2	19
96	Evidence for Mutant p53 Gain-of-Function Effects in Normal Haemopoietic Cells and Myc-Driven Lymphoma. Blood, 2014, 124, 3589-3589.	1.4	0
97	Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nature Immunology, 2013, 14, 959-965.	14.5	209
98	The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nature Immunology, 2013, 14, 389-395.	14.5	264
99	PEGylation of interferon $\hat{l}\pm 2$ improves lymphatic exposure after subcutaneous and intravenous administration and improves antitumour efficacy against lymphatic breast cancer metastases. Journal of Controlled Release, 2013, 168, 200-208.	9.9	70
100	CD8+ T cell help is required for efficient induction of EAE in Lewis rats. Journal of Neuroimmunology, 2013, 260, 17-27.	2.3	20
101	Foxoâ€mediated <i>Bim</i> transcription is dispensable for the apoptosis of hematopoietic cells that is mediated by this BH3â€only protein. EMBO Reports, 2013, 14, 992-998.	4.5	26
102	Mutually exclusive regulation of T cell survival by IL-7R and antigen receptor-induced signals. Nature Communications, 2013 , 4 , 1735 .	12.8	56
103	Glucocorticoid-Induced Apoptosis in Animal Models of Multiple Sclerosis. Critical Reviews in Immunology, 2013, 33, 183-202.	0.5	9
104	Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes and Development, 2012, 26, 120-125.	5.9	344
105	Targeting antiapoptotic A1/Bfl-1 by in vivo RNAi reveals multiple roles in leukocyte development in mice. Blood, 2012, 119, 6032-6042.	1.4	52
106	The BH3-Only Proteins Bim and Puma Cooperate to Impose Deletional Tolerance of Organ-Specific Antigens. Immunity, 2012, 37, 451-462.	14.3	75
107	A1/Bfl-1 in leukocyte development and cell death. Experimental Cell Research, 2012, 318, 1291-1303.	2.6	44
108	Acid Sphingomyelinase Is Required for Protection of Effector Memory T Cells against Glucocorticoid-Induced Cell Death. Journal of Immunology, 2011, 187, 4509-4516.	0.8	30

#	Article	IF	CITATIONS
109	Maximal killing of lymphoma cells by DNA damage–inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood, 2010, 116, 5256-5267.	1.4	87
110	Clearance of Measles Virus from Persistently Infected Cells by Short Hairpin RNA. Journal of Virology, 2009, 83, 9423-9431.	3.4	12
111	Reduced Expression of the Mevalonate Pathway Enzyme Farnesyl Pyrophosphate Synthase Unveils Recognition of Tumor Cells by Vγ9Vδ2 T Cells. Journal of Immunology, 2009, 182, 8118-8124.	0.8	90
112	Stable silencing of the glucocorticoid receptor in myelinâ€specific T effector cells by retroviral delivery of shRNA: Insight into neuroinflammatory disease. European Journal of Immunology, 2009, 39, 2361-2370.	2.9	6
113	Proliferation Arrest in B-Raf Mutant Melanoma Cell Lines upon MAPK Pathway Activation. Journal of Investigative Dermatology, 2009, 129, 406-414.	0.7	18
114	Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18507-18512.	7.1	149
115	Silencing of the Mineralocorticoid Receptor by Ribonucleic Acid Interference in Transgenic Rats Disrupts Endocrine Homeostasis. Molecular Endocrinology, 2008, 22, 1304-1311.	3.7	13
116	Activation of the MAP Kinase Pathway Induces Apoptosis in the Merkel Cell Carcinoma Cell Line UISO. Journal of Investigative Dermatology, 2007, 127, 2116-2122.	0.7	27
117	Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology, 2007, 122, 47-53.	4.4	174
118	The Stability and Anti-apoptotic Function of A1 Are Controlled by Its C Terminus. Journal of Biological Chemistry, 2006, 281, 13663-13671.	3.4	52
119	Mitochondria-Dependent Caspase-9 Activation Is Necessary for Antigen Receptor-Mediated Effector Caspase Activation and Apoptosis in WEHI 231 Lymphoma Cells. Journal of Immunology, 2002, 168, 3902-3909.	0.8	50