Maria Knadel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1215997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water repellency prediction in highâ€organic Greenlandic soils: Comparing vis–NIRS to pedotransfer functions. Soil Science Society of America Journal, 2022, 86, 643-657.	1.2	6
2	Total Phosphorus Determination in Soils Using Laser-Induced Breakdown Spectroscopy: Evaluating Different Sources of Matrix Effects. Applied Spectroscopy, 2021, 75, 22-33.	1.2	12
3	Combining Vis–NIR spectroscopy and advanced statistical analysis for estimation of soil chemical properties relevant for forest road construction. Soil Science Society of America Journal, 2021, 85, 1073-1090.	1.2	6
4	Estimating Atterberg limits of soils from reflectance spectroscopy and pedotransfer functions. Geoderma, 2021, 402, 115300.	2.3	2
5	Predicting glyphosate sorption across New Zealand pastoral soils using basic soil properties or Vis–NIR spectroscopy. Geoderma, 2020, 360, 114009.	2.3	21
6	Predicting the dry bulk density of soils across Denmark: Comparison of single-parameter, multi-parameter, and vis–NIR based models. Geoderma, 2020, 361, 114080.	2.3	31
7	Combining Laser-Induced Breakdown Spectroscopy (LIBS) and Visible Near-Infrared Spectroscopy (Vis-NIRS) for Soil Phosphorus Determination. Sensors, 2020, 20, 5419.	2.1	18
8	Estimating coefficient of linear extensibility using Vis–NIR reflectance spectral data: Comparison of model validation approaches. Vadose Zone Journal, 2020, 19, e20057.	1.3	2
9	Combining visible nearâ€infrared spectroscopy and water vapor sorption for soil specific surface area estimation. Vadose Zone Journal, 2020, 19, e20007.	1.3	7
10	Comparison of Cation Exchange Capacity Estimated from Vis–NIR Spectral Reflectance Data and a Pedotransfer Function. Vadose Zone Journal, 2019, 18, 1-8.	1.3	18
11	The Relation between Soil Water Repellency and Water Content Can Be Predicted by Visâ€NIR Spectroscopy. Soil Science Society of America Journal, 2019, 83, 1616-1627.	1.2	9
12	Estimating Soil Particle Density using Visible Nearâ€infrared Spectroscopy and a Simple, Twoâ€compartment Pedotransfer Function. Soil Science Society of America Journal, 2019, 83, 37-47.	1.2	10
13	Comparing Visible–Nearâ€Infrared Spectroscopy and a Pedotransfer Function for Predicting the Dry Region of the Soilâ€Water Retention Curve. Vadose Zone Journal, 2019, 18, 1-13.	1.3	8
14	Onâ€theâ€Go Sensor Fusion for Prediction of Clay and Organic Carbon Using Preâ€processing Survey, Different Validation Methods, and Variable Selection. Soil Science Society of America Journal, 2019, 83, 300-310.	1.2	9
15	Soil organic carbon predictions in Subarctic Greenland by visible–near infrared spectroscopy. Arctic, Antarctic, and Alpine Research, 2019, 51, 490-505.	0.4	8
16	Estimating Atterberg Limits of Fineâ€Grained Soils by Visible–Nearâ€Infrared Spectroscopy. Vadose Zone Journal, 2019, 18, 190039.	1.3	7
17	Applicability of the Guggenheim–Anderson–Boer water vapour sorption model for estimation of soil specific surface area. European Journal of Soil Science, 2018, 69, 245-255.	1.8	43
18	Visibleâ€Nearâ€Infrared Spectroscopy Prediction of Soil Characteristics as Affected by Soilâ€Water Content. Soil Science Society of America Journal, 2018, 82, 1333-1346.	1.2	29

MARIA KNADEL

#	Article	IF	CITATIONS
19	Soil Specific Surface Area Determination by Visible Nearâ€Infrared Spectroscopy. Soil Science Society of America Journal, 2018, 82, 1046-1056.	1.2	17
20	Combining Xâ€ray Computed Tomography and Visible Nearâ€Infrared Spectroscopy for Prediction of Soil Structural Properties. Vadose Zone Journal, 2018, 17, 1-13.	1.3	23
21	Predicting the Campbell Soil Water Retention Function: Comparing Visible–Nearâ€Infrared Spectroscopy with Classical Pedotransfer Function. Vadose Zone Journal, 2018, 17, 1-12.	1.3	19
22	Visible–Near-Infrared Spectroscopy can predict Mass Transport of Dissolved Chemicals through Intact Soil. Scientific Reports, 2018, 8, 11188.	1.6	21
23	Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination. Biosystems Engineering, 2017, 156, 157-172.	1.9	43
24	Complete Soil Texture is Accurately Predicted by Visible Near-Infrared Spectroscopy. Soil Science Society of America Journal, 2017, 81, 758-769.	1.2	31
25	Digital Mapping of Toxic Metals in Qatari Soils Using Remote Sensing and Ancillary Data. Remote Sensing, 2016, 8, 1003.	1.8	51
26	Assessing Soil Water Repellency of a Sandy Field with Visible near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2016, 24, 215-224.	0.8	19
27	Field-Scale Predictions of Soil Contaminant Sorption Using Visible–Near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2016, 24, 281-291.	0.8	20
28	Visible–Nearâ€Infrared Spectroscopy Can Predict the Clay/Organic Carbon and Mineral Fines/Organic Carbon Ratios. Soil Science Society of America Journal, 2016, 80, 1486-1495.	1.2	29
29	A global spectral library to characterize the world's soil. Earth-Science Reviews, 2016, 155, 198-230.	4.0	546
30	Soil organic carbon and particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform. Computers and Electronics in Agriculture, 2015, 114, 134-144.	3.7	37
31	Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Advances in Agronomy, 2015, , 139-159.	2.4	288
32	Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra. PLoS ONE, 2015, 10, e0142295.	1.1	69
33	The Effects of Moisture Conditions-From Wet to Hyper dry-On Visible Near-Infrared Spectra of Danish Reference Soils. Soil Science Society of America Journal, 2014, 78, 422-433.	1.2	39
34	Quantification of SOC and Clay Content Using Visible Near-Infrared Reflectance–Mid-Infrared Reflectance Spectroscopy With Jack-Knifing Partial Least Squares Regression. Soil Science, 2014, 179, 325-332.	0.9	32
35	Using Vis-NIR Spectroscopy for Monitoring Temporal Changes in Soil Organic Carbon. Soil Science, 2013, 178, 389-399.	0.9	15
36	Comparing Predictive Abilities of Three Visible-Near Infrared Spectrophotometers for Soil Organic Carbon and Clay Determination. Journal of Near Infrared Spectroscopy, 2013, 21, 67-80.	0.8	44

MARIA KNADEL

#	Article	IF	CITATIONS
37	Predicting Soil Organic Carbon at Field Scale Using a National Soil Spectral Library. Journal of Near Infrared Spectroscopy, 2013, 21, 213-222.	0.8	32
38	Visible-Near Infrared Spectra as a Proxy for Topsoil Texture and Glacial Boundaries. Soil Science Society of America Journal, 2013, 77, 568-579.	1.2	55
39	Environment versus dispersal in the assembly of western Amazonian palm communities. Journal of Biogeography, 2012, 39, 1318-1332.	1.4	61
40	Development of a Danish national Vis-NIR soil spectral library for soil organic carbon determination. , 2012, , 403-408.		14
41	Soil profile organic carbon prediction with visible-near infrared reflectance spectroscopy based on a national database. , 2012, , 409-413.		3
42	Multisensor On-The-Go Mapping of Soil Organic Carbon Content. Soil Science Society of America Journal, 2011, 75, 1799-1806.	1.2	37