
Hua-Sheng Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1215815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nature Communications, 2018, 9, 1615.	12.8	170
2	Structural characterization and discrimination of the Paris polyphylla var. yunnanensis and Paris vietnamensis based on metabolite profiling analysis. Journal of Pharmaceutical and Biomedical Analysis, 2017, 142, 252-261.	2.8	33
3	Molecular Identification and Taxonomic Implication of Herbal Species in Genus Corydalis (Papaveraceae). Molecules, 2018, 23, 1393.	3.8	24
4	<scp>I</scp> dentification of " <scp>H</scp> uoshan shihu―Fengdou: <scp>C</scp> omparative authentication of the Daodi herb <i>Dendrobium huoshanense</i> and its related species by macroscopic and microscopic features. Microscopy Research and Technique, 2017, 80, 712-721.	2.2	22
5	The profiling of bioactive ingredients of differently aged <i>Salvia miltiorrhiza</i> roots. Microscopy Research and Technique, 2013, 76, 947-954.	2.2	21
6	Tissue-Specific Metabolite Profiling on the Different Parts of Bolting and Unbolting Peucedanum praeruptorum Dunn (Qianhu) by Laser Microdissection Combined with UPLC-Q/TOF–MS and HPLC–DAD. Molecules, 2019, 24, 1439.	3.8	21
7	Quantitative and Chemical Fingerprint Analysis for the Quality Evaluation of Platycodi Radix Collected from Various Regions in China by HPLC Coupled with Chemometrics. Molecules, 2018, 23, 1823.	3.8	20
8	Molecular Systematics of Genus Atractylodes (Compositae, Cardueae): Evidence from Internal Transcribed Spacer (ITS) and trnL-F Sequences. International Journal of Molecular Sciences, 2012, 13, 14623-14633.	4.1	18
9	Transcriptome analysis identifies putative genes involved in triterpenoidÂbiosynthesis in Platycodon grandiflorus. Planta, 2021, 254, 34.	3.2	18
10	Analysis of the age of Panax ginseng based on telomere length and telomerase activity. Scientific Reports, 2015, 5, 7985.	3.3	17
11	Tissue-specific metabolite profiling of Fallopia multiflora (Heshouwu) and Fallopia multiflora var. angulata by mass spectrometry imaging and laser microdissection combined with UPLC-Q/TOF-MS. Journal of Pharmaceutical and Biomedical Analysis, 2021, 200, 114070.	2.8	16
12	Comparative analysis and chemical profiling of different forms of Peucedani Radix. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113410.	2.8	15
13	Rapid identification of growth years and profiling of bioactive ingredients in Astragalus membranaceus var. mongholicus (Huangqi) roots from Hunyuan, Shanxi. Chinese Medicine, 2017, 12, 14.	4.0	14
14	ldentification of ages and determination of paeoniflorin in roots of Paeonia lactiflora Pall. From four producing areas based on growth rings. Microscopy Research and Technique, 2012, 75, 1191-1196.	2.2	13
15	Quality Analysis of Different Specification Grades of Astragalus membranaceus var. mongholicus (Huangqi) from Hunyuan, Shanxi. Journal of AOAC INTERNATIONAL, 2019, 102, 734-740.	1.5	13
16	Microscopic Characteristic and Chemical Composition Analysis of Three Medicinal Plants and Surface Frosts. Molecules, 2019, 24, 4548.	3.8	13
17	Comparative transcriptome analysis of tubers, stems, and flowers of Gastrodia elata Blume reveals potential genes involved in the biosynthesis of phenolics. Fìtoterapìâ, 2021, 153, 104988.	2.2	13
18	Bioinformatics analysis of a long non‑coding RNA and mRNA regulation network in rats with middle cerebral artery occlusion based on RNA sequencing. Molecular Medicine Reports, 2019, 20, 417-432	2.4	10

HUA-SHENG PENG

#	Article	IF	CITATIONS
19	Untargeted Metabolomics and Targeted Quantitative Analysis of Temporal and Spatial Variations in Specialized Metabolites Accumulation in Poria cocos (Schw.) Wolf (Fushen). Frontiers in Plant Science, 2021, 12, 713490.	3.6	10
20	The influences of inorganic elements in soil on the development of famous - region Atractylodes lancea (Thunb.) DC. Pharmacognosy Magazine, 2015, 11, 337.	0.6	9
21	Alternative analyses of compensatory base changes in an ITS2 phylogeny of Corydalis (Papaveraceae). Annals of Botany, 2019, 124, 233-243.	2.9	9
22	Comparative analysis in different organs and tissueâ€specific metabolite profiling of <i>Atractylodes lancea</i> from four regions by GC–MS and laser microdissection. Journal of Separation Science, 2022, 45, 1067-1079.	2.5	9
23	An Evaluation of Traits, Nutritional, and Medicinal Component Quality of Polygonatum cyrtonema Hua and P. sibiricum Red Frontiers in Plant Science, 2022, 13, 891775.	3.6	9
24	Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in <i>Platycodon grandiflorus</i> . Plant Signaling and Behavior, 2022, 17, .	2.4	9
25	Developmental anatomy of anomalous structure and classification of commercial specifications and grades of the <i>Astragalus membranaceus</i> var. <i>mongholicus</i> . Microscopy Research and Technique, 2018, 81, 1165-1172.	2.2	8
26	Programmed cell death during the formation of rhytidome and interxylary cork in roots of <i>Astragalus membranaceus</i> (Leguminosae). Microscopy Research and Technique, 2021, 84, 1400-1413.	2.2	8
27	Growth rings in roots of medicinal perennial dicotyledonous herbs from temperate and subtropical zones in China. Microscopy Research and Technique, 2018, 81, 365-375.	2.2	7
28	Untargeted metabolomics approach reveals the tissue-specific markers of balloon flower root (Platycodi Radix) using UPLC-Q-TOF/MS. Microchemical Journal, 2021, 168, 106447.	4.5	7
29	Identification of medicinal mugua origin by near infrared spectroscopy combined with partial Least-squares discriminant analysis. Pharmacognosy Magazine, 2016, 12, 93.	0.6	7
30	Colour, chemical compounds, and antioxidant capacity of Astragali Radix based on untargeted metabolomics and targeted quantification. Phytochemical Analysis, 2022, 33, 599-611.	2.4	7
31	Study on morphological characteristics and microscopic structure of medicinal organs of <i>Pulsatilla chinensis</i> (Bunge) Regel. Microscopy Research and Technique, 2017, 80, 950-958.	2.2	6
32	Determination of the species status of Fallopia multiflora, Fallopia multiflora var. angulata and Fallopia multiflora var. ciliinervis based on morphology, molecular phylogeny, and chemical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2019, 166, 406-420.	2.8	6
33	Full-length transcriptome sequences by a combination of sequencing platforms applied to isoflavonoid and triterpenoid saponin biosynthesis of Astragalus mongholicus Bunge. Plant Methods, 2021, 17, 61.	4.3	6
34	Molecular cloning and functional characterization of two squalene synthase genes in Atractylodes lancea. Planta, 2022, 255, 8.	3.2	6
35	Compare the microscopic characteristics of stems of the 24 <i>Dendrobium</i> species utilized in the traditional Chinese medicine " <i>Shihu</i> ― Microscopy Research and Technique, 2018, 81, 1191-1202.	2.2	5
36	Morphogenesis, ultrastructure, and chemical profiling of trichomes in Artemisia argyi H. Lév. & Vaniot (Asteraceae). Planta, 2022, 255, 102.	3.2	4

HUA-SHENG PENG

#	Article	IF	CITATIONS
37	<i>Corydalis huangshanensis</i> (Fumariaceae), a new species from Anhui, China. Nordic Journal of Botany, 2018, 36, e01960.	0.5	3
38	<p>Peucedanum huangshanense (Apiaceae), a new species from Anhui, China</p> . Phytotaxa, 2020, 430, 17-24.	0.3	3
39	Cenome survey sequencing of <i>Atractylodes lancea</i> and identification of its SSR markers. Bioscience Reports, 2020, 40, .	2.4	3
40	Molecular cloning and functional characterization of an isoflavone glucosyltransferase from Pueraria thomsonii. Chinese Journal of Natural Medicines, 2022, 20, 133-138.	1.3	3
41	Identification of four <i>Aconitum</i> species used as "Caowu―in herbal markets by 3d reconstruction and microstructural comparison. Microscopy Research and Technique, 2015, 78, 425-432.	2.2	2
42	Comparative Elucidation of Age, Diameter, and "Pockmarks―in Roots of Paeonia lactiflora Pall. (Shaoyao) by Qualitative and Quantitative Methods. Frontiers in Plant Science, 2021, 12, 802196.	3.6	1
43	<i>Aconitum anhuiense</i> sp. nov. (Ranunculaceae), a new species from Anhui, China. Nordic Journal of Botany, 2021, 39, .	0.5	0
44	Comparative proteomics reveals biochemical changes in Salvia miltiorrhiza Bunge during sweating processing. Journal of Ethnopharmacology, 2022, 293, 115329.	4.1	0