
Verena Labi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1215306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of the orphan nuclear receptor NR2F6 enhances CD8+ T-cell memory via IFN-γ. Cell Death and Disease, 2021, 12, 187.	6.3	10
2	MCL-1 and BCL-XL: blood brothers. Blood, 2021, 137, 1850-1851.	1.4	2
3	Bacterial Infection with Listeria monocytogenes in Mice and Subsequent Analysis of AntigenSpecific CD8 T Cell Responses. Bio-protocol, 2021, 11, e4247.	0.4	0
4	SAFB2 Enables the Processing of Suboptimal Stem-Loop Structures in Clustered Primary miRNA Transcripts. Molecular Cell, 2020, 78, 876-889.e6.	9.7	43
5	Cell signaling and the aging of B cells. Experimental Gerontology, 2020, 138, 110985.	2.8	6
6	Context-specific regulation of cell survival by a miRNA-controlled BIM rheostat. Genes and Development, 2019, 33, 1673-1687.	5.9	13
7	Orphan Nuclear Receptor NR2F6 Suppresses T Follicular Helper Cell Accumulation through Regulation of IL-21. Cell Reports, 2019, 28, 2878-2891.e5.	6.4	20
8	miR-17â^¼92 in lymphocyte development and lymphomagenesis. Cancer Letters, 2019, 446, 73-80.	7.2	8
9	<scp>TET</scp> enzymes control antibody production and shape the mutational landscape in germinal centre B cells. FEBS Journal, 2019, 286, 3566-3581.	4.7	37
10	CHK1 dosage in germinal center B cells controls humoral immunity. Cell Death and Differentiation, 2019, 26, 2551-2567.	11.2	14
11	Addiction of B Cell Lymphomas to microRNA-17-92 Is Mediated By a Single Target Gene. Blood, 2019, 134, 1258-1258.	1.4	0
12	Differential effects of Vavâ€promoterâ€driven overexpression of BCLX and BFL1 on lymphocyte survival and B cell lymphomagenesis. FEBS Journal, 2018, 285, 1403-1418.	4.7	5
13	The c-Myc/miR17-92/PTEN Axis Tunes PI3K Activity to Control Expression of Recombination Activating Genes in Early B Cell Development. Frontiers in Immunology, 2018, 9, 2715.	4.8	24
14	Deletion of the p53 Target Gene PUMA Prevents Bone Marrow Failure in a Dyskeratosis Congenita Mouse Model. Blood, 2018, 132, 648-648.	1.4	0
15	Transient apoptosis inhibition in donor stem cells improves hematopoietic stem cell transplantation. Journal of Experimental Medicine, 2017, 214, 2967-2983.	8.5	21
16	Checkpoint kinase 1 is essential for normal B cell development and lymphomagenesis. Nature Communications, 2017, 8, 1697.	12.8	28
17	A c-Myc/miR17-92/Pten Axis Controls PI3K-Mediated Positive and Negative Selection in B Cell Development and Reconstitutes CD19 Deficiency. Cell Reports, 2016, 16, 419-431.	6.4	45
18	Tissue-specific DNA demethylation is required for proper B-cell differentiation and function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5018-5023.	7.1	83

Verena Labi

#	Article	IF	CITATIONS
19	Canonical NF-κB signaling is uniquely required for the long-term persistence of functional mature B cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5065-5070.	7.1	20
20	How cell death shapes cancer. Cell Death and Disease, 2015, 6, e1675-e1675.	6.3	205
21	Combined loss of the BH3-only proteins Bim and Bmf restores B-cell development and function in TACI-Ig transgenic mice. Cell Death and Differentiation, 2015, 22, 1477-1488.	11.2	18
22	Chemokine-mediated redirection of T cells constitutes a critical mechanism of glucocorticoid therapy in autoimmune CNS responses. Acta Neuropathologica, 2014, 127, 713-729.	7.7	46
23	Deregulated cell death and lymphocyte homeostasis cause premature lethality in mice lacking the BH3-only proteins Bim and Bmf. Blood, 2014, 123, 2652-2662.	1.4	40
24	BH3-only protein Noxa contributes to apoptotic control of stress-erythropoiesis. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1306-1318.	4.9	10
25	Haematopoietic stem cell survival and transplantation efficacy is limited by the BH3â€only proteins Bim and Bmf. EMBO Molecular Medicine, 2013, 5, 122-136.	6.9	25
26	Minor cell-death defects but reduced tumor latency in mice lacking the BH3-only proteins Bad and Bmf. Oncogene, 2013, 32, 621-630.	5.9	15
27	PIDDosome-independent tumor suppression by Caspase-2. Cell Death and Differentiation, 2012, 19, 1722-1732.	11.2	60
28	Can the analysis of BH3-only protein knockout mice clarify the issue of â€~direct versus indirect' activation of Bax and Bak?. Cell Death and Differentiation, 2011, 18, 1545-1546.	11.2	30
29	Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nature Genetics, 2011, 43, 17-19.	21.4	221
30	Suppression of B-cell lymphomagenesis by the BH3-only proteins Bmf and Bad. Blood, 2010, 115, 995-1005.	1.4	53
31	AICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXA in chronic lymphocytic leukemia cells. Blood, 2010, 116, 3023-3032.	1.4	95
32	Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes and Development, 2010, 24, 1602-1607.	5.9	95
33	PUMA-mediated tumor suppression: A tale of two stories. Cell Cycle, 2010, 9, 4269-4275.	2.6	16
34	Pro-apoptotic Bax is the major and Bak an auxiliary effector in cytokine deprivation-induced mast cell apoptosis. Cell Death and Disease, 2010, 1, e43-e43.	6.3	26
35	Role for BH3-Only Protein NOXA In Growth-Factor Deprivation and Early Erythropoiesis. Blood, 2010, 116, 4235-4235.	1.4	0
36	Lack of the BH3-Only Proteins Bim, Bmf and Puma In Haematopoietic Stem and Progenitor Cells Facilitates Early Reconstitution and Long Term Haematopoiesis Blood, 2010, 116, 1542-1542.	1.4	0

Verena Labi

#	Article	IF	CITATIONS
37	Deletion of Puma and p21Waf1 In Mice Deactivates p53-Induced Cell Death and Cell Cycle Arrest, but Protects Mice From Irradiation-Induced Lymphomagenesis by a Mechanism Involving Hemopoietic Stem Cell Quiescence. Blood, 2010, 116, 90-90.	1.4	5
38	Loss of the pro-apoptotic BH3-only Bcl-2 family member Bim sustains B lymphopoiesis in the absence of IL-7. International Immunology, 2009, 21, 715-725.	4.0	20
39	Caspase-2 activation in the absence of PIDDosome formation. Journal of Cell Biology, 2009, 185, 291-303.	5.2	144
40	BH3-only protein Bim more critical than Puma in tyrosine kinase inhibitor–induced apoptosis of human leukemic cells and transduced hematopoietic progenitors carrying oncogenic FLT3. Blood, 2009, 113, 2302-2311.	1.4	31
41	Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy?. Cell Death and Differentiation, 2008, 15, 977-987.	11.2	147
42	Bim and Bmf in tissue homeostasis and malignant disease. Oncogene, 2008, 27, S41-S52.	5.9	109
43	The Nuclear Orphan Receptor NR2F6 Suppresses Lymphocyte Activation and T Helper 17-Dependent Autoimmunity. Immunity, 2008, 29, 205-216.	14.3	93
44	Loss of the BH3-only protein Bmf impairs B cell homeostasis and accelerates γ irradiation–induced thymic lymphoma development. Journal of Experimental Medicine, 2008, 205, 641-655.	8.5	116
45	BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death and Differentiation, 2006, 13, 1325-1338.	11.2	159
46	The NF-ÂB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10979-10984.	7.1	80
47	Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. Journal of Experimental Medicine, 2006, 203, 2939-2951.	8.5	209
48	BH3-only proteins Puma and Bim are rate-limiting for γ-radiation– and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood, 2005, 106, 4131-4138.	1.4	259
49	The Bcl-2 protein family and its role in the development of neoplastic disease. Experimental Gerontology, 2004, 39, 1125-1135.	2.8	49
50	Orphan Nuclear Receptor NR2F6 Suppresses T Follicular Helper Cell Accumulation Through Direct Regulation of IL-21. SSRN Electronic Journal, 0, , .	0.4	0