Alexander Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1215277/publications.pdf

Version: 2024-02-01

687363 839539 62 570 13 18 h-index g-index citations papers 71 71 71 442 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic Sparse Subspace Clustering for Evolving High-Dimensional Data Streams. IEEE Transactions on Cybernetics, 2022, 52, 4173-4186.	9.5	8
2	An Integrated Workflow for Building Digital Twins of Cardiac Electromechanics—A Multi-Fidelity Approach for Personalising Active Mechanics. Mathematics, 2022, 10, 823.	2.2	16
3	Predicting power outages caused by extratropical storms. Natural Hazards and Earth System Sciences, 2021, 21, 607-627.	3.6	15
4	A heuristic model-based approach for compensating wind effects in ski jumping. Journal of Biomechanics, 2021, 125, 110585.	2.1	3
5	Local Graph Clustering With Network Lasso. IEEE Signal Processing Letters, 2021, 28, 106-110.	3.6	8
6	On the Sample Complexity of Graphical Model Selection From Non-Stationary Samples. IEEE Transactions on Signal Processing, 2020, 68, 17-32.	5.3	8
7	On the Duality Between Network Flows and Network Lasso. IEEE Signal Processing Letters, 2020, 27, 940-944.	3.6	6
8	Classifying Partially Labeled Networked Data VIA Logistic Network Lasso. , 2020, , .		8
9	Networked Exponential Families for Big Data Over Networks. IEEE Access, 2020, 8, 202897-202909.	4.2	8
10	Learning Explainable Decision Rules via Maximum Satisfiability. IEEE Access, 2020, 8, 218180-218185.	4.2	8
11	An Information-Theoretic Approach to Personalized Explainable Machine Learning. IEEE Signal Processing Letters, 2020, 27, 825-829.	3.6	15
12	An open-source tool for the validation of finite element models using three-dimensional full-field measurements. Medical Engineering and Physics, 2020, 77, 125-129.	1.7	2
13	Clustering in Partially Labeled Stochastic Block Models via Total Variation Minimization. , 2020, , .		1
14	Graph Signal Sampling via Reinforcement Learning. , 2019, , .		3
15	Short-Term Prediction of Electricity Outages Caused by Convective Storms. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 8618-8626.	6.3	7
16	Modeling and simulation of human induced pluripotent stem cellâ€derived cardiac tissue. GAMM Mitteilungen, 2019, 42, e201900002.	5.5	4
17	Localized Linear Regression in Networked Data. IEEE Signal Processing Letters, 2019, 26, 1090-1094.	3.6	17
18	Automating Root Cause Analysis via Machine Learning in Agile Software Testing Environments. , 2019, , .		12

#	Article	IF	Citations
19	The Actor-Dueling-Critic Method for Reinforcement Learning. Sensors, 2019, 19, 1547.	3.8	8
20	Sparse Subspace Clustering for Evolving Data Streams. , 2019, , .		4
21	Classifying Process Instances Using Recurrent Neural Networks. Lecture Notes in Business Information Processing, 2019, , 313-324.	1.0	17
22	Optimization of the flight technique in ski jumping: The influence of wind. Journal of Biomechanics, 2019, 88, 190-193.	2.1	7
23	Outlier Detection from Non-Smooth Sensor Data. , 2019, , .		1
24	Semi-Supervised Learning in Network-Structured Data via Total Variation Minimization. IEEE Transactions on Signal Processing, 2019, 67, 6256-6269.	5. 3	23
25	On the Complexity of Sparse Label Propagation. Frontiers in Applied Mathematics and Statistics, 2018, 4, .	1.3	6
26	Classifying Big Data Over Networks Via The Logistic Network Lasso. , 2018, , .		5
27	The Network Nullspace Property for Compressed Sensing of Big Data Over Networks. , 2018, , .		3
28	On the Sample Complexity of Graphical Model Selection from Non-Stationary Samples. , 2018, , .		0
29	A Network Compatibility Condition For Compressed Sensing Over Complex Networks. , 2018, , .		0
30	PREDICTING ELECTRICITY OUTAGES CAUSED BY CONVECTIVE STORMS., 2018,,.		2
31	Network Intrusion Detection Using Flow Statistics. , 2018, , .		6
32	Wind and fairness in ski jumping: A computer modelling analysis. Journal of Biomechanics, 2018, 75, 147-153.	2.1	7
33	When Is Network Lasso Accurate?. Frontiers in Applied Mathematics and Statistics, 2018, 3, .	1.3	18
34	The Network Nullspace Property for Compressed Sensing of Big Data Over Networks. Frontiers in Applied Mathematics and Statistics, 2018, 4, .	1.3	11
35	Dynamic Clustering Scheme for Evolving Data Streams Based on Improved STRAP. IEEE Access, 2018, 6, 46157-46166.	4.2	12
36	PREDICTIVE MAINTENANCE OF PHOTOVOLTAIC PANELS VIA DEEP LEARNING., 2018,,.		29

#	Article	IF	CITATIONS
37	Structural Feature Selection for Event Logs. Lecture Notes in Business Information Processing, 2018 , , $20-35$.	1.0	7
38	Advantages and problems of nonlinear methods applied to analyze physiological time signals: human balance control as an example. Scientific Reports, 2017, 7, 2464.	3.3	17
39	The network nullspace property for compressed sensing over networks. , 2017, , .		7
40	Random walk sampling for big data over networks. , 2017, , .		8
41	Smooth graph signal recovery via efficient Laplacian solvers. , 2017, , .		1
42	Learning conditional independence structure for high-dimensional uncorrelated vector processes. , 2017, , .		3
43	A Fixed-Point of View on Gradient Methods for Big Data. Frontiers in Applied Mathematics and Statistics, 2017, 3, .	1.3	15
44	Recovery conditions and sampling strategies for network Lasso. , 2017, , .		3
45	Graph signal recovery from incomplete and noisy information using approximate message passing. , $2016, , .$		3
46	Scalable graph signal recovery for big data over networks. , 2016, , .		9
47	Efficient graph signal recovery over big networks. , 2016, , .		5
48	On the Minimax Risk of Dictionary Learning. IEEE Transactions on Information Theory, 2016, 62, 1501-1515.	2.4	26
49	Learning the Conditional Independence Structure of Stationary Time Series: A Multitask Learning Approach. IEEE Transactions on Signal Processing, 2015, 63, 5677-5690.	5. 3	22
50	Graphical LASSO based Model Selection for Time Series. IEEE Signal Processing Letters, 2015, 22, 1781-1785.	3.6	39
50		3.6	39
	1781-1785.	2.4	
51	1781-1785. Compressive nonparametric graphical model selection for time series. , 2014, , . Minimum Variance Estimation of a Sparse Vector Within the Linear Gaussian Model: An RKHS Approach.		11

#	Article	IF	CITATIONS
55	The RKHS Approach to Minimum Variance Estimation Revisited: Variance Bounds, Sufficient Statistics, and Exponential Families. IEEE Transactions on Information Theory, 2014, 60, 4050-4065.	2.4	2
56	Compressive Spectral Estimation for Nonstationary Random Processes. IEEE Transactions on Information Theory, 2013, 59, 3117-3138.	2.4	19
57	Minimum variance estimation for the sparse signal in noise model. , 2011, , .		2
58	Unbiased Estimation of a Sparse Vector in White Gaussian Noise. IEEE Transactions on Information Theory, 2011, 57, 7856-7876.	2.4	15
59	Performance bounds for sparse parametric covariance estimation in Gaussian models., 2011,,.		1
60	A lower bound on the estimator variance for the sparse linear model. , 2010, , .		5
61	On unbiased estimation of sparse vectors corrupted by Gaussian noise. , 2010, , .		8
62	Compressive spectral estimation for nonstationary random processes. , 2009, , .		4