List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12152353/publications.pdf Version: 2024-02-01

		19657	22166
158	15,324	61	113
papers	citations	h-index	g-index
1 - 1	1 7 1	1 - 1	01401
171	171	171	21401
all docs	docs citations	times ranked	citing authors

DALLI C. THOMAS

#	Article	IF	CITATIONS
1	Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature, 2017, 547, 89-93.	27.8	723
2	The Intracellular Sensor NLRP3 Mediates Key Innate and Healing Responses to Influenza A Virus via the Regulation of Caspase-1. Immunity, 2009, 30, 566-575.	14.3	640
3	De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation. Cell, 2017, 170, 142-157.e19.	28.9	536
4	Cell-mediated Protection in Influenza Infection. Emerging Infectious Diseases, 2006, 12, 48-54.	4.3	405
5	VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Research, 2018, 46, D419-D427.	14.5	391
6	TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5306-5311.	7.1	383
7	Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nature Immunology, 2016, 17, 1226-1234.	14.5	348
8	Depletion of Alveolar Macrophages during Influenza Infection Facilitates Bacterial Superinfections. Journal of Immunology, 2013, 191, 1250-1259.	0.8	331
9	Influenza and the challenge for immunology. Nature Immunology, 2006, 7, 449-455.	14.5	324
10	Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection. Nature Immunology, 2013, 14, 480-488.	14.5	320
11	RIPK3 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated Apoptosis to Protect against Influenza A Virus. Cell Host and Microbe, 2016, 20, 13-24.	11.0	299
12	DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death. Cell Host and Microbe, 2016, 20, 674-681.	11.0	292
13	Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell, 2020, 180, 1115-1129.e13.	28.9	288
14	Influenza virus-related critical illness: pathophysiology and epidemiology. Critical Care, 2019, 23, 258.	5.8	286
15	Cytomegalovirus infection enhances the immune response to influenza. Science Translational Medicine, 2015, 7, 281ra43.	12.4	277
16	Maturation of Dendritic Cell 2 Phenotype by a Helminth Glycan Uses a Toll-Like Receptor 4-Dependent Mechanism. Journal of Immunology, 2003, 171, 5837-5841.	0.8	269
17	Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. Nature Communications, 2015, 6, 6833.	12.8	241
18	New fronts emerge in the influenza cytokine storm. Seminars in Immunopathology, 2017, 39, 541-550.	6.1	220

#	Article	IF	CITATIONS
19	T Cell Receptor αβ Diversity Inversely Correlates with Pathogen-Specific Antibody Levels in Human Cytomegalovirus Infection. Science Translational Medicine, 2012, 4, 128ra42.	12.4	217
20	Understanding the drivers of MHC restriction of T cell receptors. Nature Reviews Immunology, 2018, 18, 467-478.	22.7	214
21	Paired analysis of TCRα and TCRβ chains at the single-cell level in mice. Journal of Clinical Investigation, 2011, 121, 288-295.	8.2	213
22	Lipidomic Profiling of Influenza Infection Identifies Mediators that Induce and Resolve Inflammation. Cell, 2013, 154, 213-227.	28.9	211
23	Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Science Advances, 2020, 6, .	10.3	204
24	Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nature Reviews Microbiology, 2021, 19, 425-441.	28.6	202
25	Distinct Epigenetic Signatures Delineate Transcriptional Programs during Virus-Specific CD8+ T Cell Differentiation. Immunity, 2014, 41, 853-865.	14.3	189
26	Human CD8+ T cell cross-reactivity across influenza A, B and C viruses. Nature Immunology, 2019, 20, 613-625.	14.5	180
27	SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell, 2022, 185, 603-613.e15.	28.9	176
28	SNP-mediated disruption of CTCF binding at the IFITM3 promoter is associated with risk of severe influenza in humans. Nature Medicine, 2017, 23, 975-983.	30.7	172
29	The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nature Immunology, 2013, 14, 1266-1276.	14.5	169
30	Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nature Reviews Drug Discovery, 2017, 16, 351-367.	46.4	161
31	Mucosal Immune Responses Predict Clinical Outcomes during Influenza Infection Independently of Age and Viral Load. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 449-462.	5.6	152
32	Influenza-specific lung-resident memory T cells are proliferative and polyfunctional and maintain diverse TCR profiles. Journal of Clinical Investigation, 2018, 128, 721-733.	8.2	147
33	Respiratory epithelial cells in innate immunity to influenza virus infection. Cell and Tissue Research, 2011, 343, 13-21.	2.9	146
34	Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1119-1128.	7.1	140
35	Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. Journal of Clinical Investigation, 2010, 120, 1885-1894.	8.2	140
36	Eosinophils Promote Antiviral Immunity in Mice Infected with Influenza A Virus. Journal of Immunology, 2017, 198, 3214-3226.	0.8	133

#	Article	IF	CITATIONS
37	Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection. Frontiers in Immunology, 2016, 7, 25.	4.8	128
38	Molecular basis for universal HLA-A*0201–restricted CD8 ⁺ T-cell immunity against influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4440-4445.	7.1	122
39	Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition. Annual Review of Immunology, 2019, 37, 547-570.	21.8	122
40	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
41	SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8+ T cells. Nature Immunology, 2022, 23, 781-790.	14.5	116
42	Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature, 2020, 587, 466-471.	27.8	108
43	Clonally diverse CD38+HLA-DR+CD8+ T cells persist during fatal H7N9 disease. Nature Communications, 2018, 9, 824.	12.8	107
44	CD8+ TÂcells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. Immunity, 2021, 54, 1066-1082.e5.	14.3	106
45	Quantitative impact of thymic selection on Foxp3 ⁺ and Foxp3 ^{â^'} subsets of self-peptide/MHC class II-specific CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14602-14607.	7.1	104
46	Mutational Landscape and Patterns of Clonal Evolution in Relapsed Pediatric Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2020, 1, 96-111.	5.0	93
47	Gamma Delta T Cell Reconstitution Is Associated with Fewer Infections and Improved Event-Free Survival after Hematopoietic Stem Cell Transplantation for Pediatric Leukemia. Biology of Blood and Marrow Transplantation, 2015, 21, 130-136.	2.0	92
48	Highly Pathological Influenza A Virus Infection Is Associated with Augmented Expression of PD-1 by Functionally Compromised Virus-Specific CD8 ⁺ T Cells. Journal of Virology, 2014, 88, 1636-1651.	3.4	90
49	T cell immunoglobulin and mucin protein-3 (Tim-3)/Galectin-9 interaction regulates influenza A virus-specific humoral and CD8 T-cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19001-19006.	7.1	89
50	Lung γδT Cells Mediate Protective Responses during Neonatal Influenza Infection that Are Associated with Type 2 Immunity. Immunity, 2018, 49, 531-544.e6.	14.3	85
51	Lipid Composition of the Viral Envelope of Three Strains of Influenza Virus—Not All Viruses Are Created Equal. ACS Infectious Diseases, 2015, 1, 435-442.	3.8	77
52	The neoepitope landscape in pediatric cancers. Genome Medicine, 2017, 9, 78.	8.2	77
53	Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine. Journal of Experimental Medicine, 2014, 211, 1611-1621.	8.5	76
54	TCR meta-clonotypes for biomarker discovery with tcrdist3 enabled identification of public, HLA-restricted clusters of SARS-CoV-2 TCRs. ELife, 2021, 10, .	6.0	76

#	Article	IF	CITATIONS
55	A Helminth Glycan Induces APC Maturation via Alternative NF-κB Activation Independent of IκBα Degradation. Journal of Immunology, 2005, 175, 2082-2090.	0.8	71
56	Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses. Nature Communications, 2019, 10, 2846.	12.8	70
57	The Role of Extracellular Histones in Influenza Virus Pathogenesis. American Journal of Pathology, 2018, 188, 135-148.	3.8	69
58	Neonatal CD8 T-cell Hierarchy Is Distinct from Adults and Is Influenced by Intrinsic T cell Properties in Respiratory Syncytial Virus Infected Mice. PLoS Pathogens, 2011, 7, e1002377.	4.7	68
59	Hitting the Target: How T Cells Detect and Eliminate Tumors. Journal of Immunology, 2018, 200, 392-399.	0.8	67
60	Ecological analysis of antigen-specific CTL repertoires defines the relationship between naÃ ⁻ ve and immune T-cell populations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1839-1844.	7.1	66
61	Development of Dual PLD1/2 and PLD2 Selective Inhibitors from a Common 1,3,8-Triazaspiro[4.5]decane Core: Discovery of ML298 and ML299 That Decrease Invasive Migration in U87-MG Glioblastoma Cells. Journal of Medicinal Chemistry, 2013, 56, 2695-2699.	6.4	66
62	Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8 ⁺ T cell responses. Science Translational Medicine, 2019, 11, .	12.4	66
63	Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity, 2022, 55, 749-780.	14.3	66
64	Integrating T cell receptor sequences and transcriptional profiles by clonotype neighbor graph analysis (CoNGA). Nature Biotechnology, 2022, 40, 54-63.	17.5	65
65	Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host and Microbe, 2022, 30, 83-96.e4.	11.0	64
66	Single-Cell Approach to Influenza-Specific CD8+ T Cell Receptor Repertoires Across Different Age Groups, Tissues, and Following Influenza Virus Infection. Frontiers in Immunology, 2018, 9, 1453.	4.8	63
67	Metabolic signaling directs the reciprocal lineage decisions of αβ and γδT cells. Science Immunology, 2018, 3, .	11.9	63
68	Protective Efficacy of Cross-Reactive CD8+ T Cells Recognising Mutant Viral Epitopes Depends on Peptide-MHC-I Structural Interactions and T Cell Activation Threshold. PLoS Pathogens, 2010, 6, e1001039.	4.7	62
69	A comprehensive collection of systems biology data characterizing the host response to viral infection. Scientific Data, 2014, 1, 140033.	5.3	62
70	Cell-Intrinsic Barriers of T Cell-Based Immunotherapy. Trends in Molecular Medicine, 2016, 22, 1000-1011.	6.7	60
71	Necroptosis restricts influenza A virus as a stand-alone cell death mechanism. Journal of Experimental Medicine, 2020, 217, .	8.5	60
72	Compromised respiratory function in lethal influenza infection is characterized by the depletion of type I alveolar epithelial cells beyond threshold levels. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L481-L488.	2.9	59

#	Article	IF	CITATIONS
73	The two faces of heterologous immunity: protection or immunopathology. Journal of Leukocyte Biology, 2013, 95, 405-416.	3.3	59
74	Immunity to seasonal and pandemic influenza A viruses. Microbes and Infection, 2011, 13, 489-501.	1.9	58
75	Pause on Avian Flu Transmission Research. Science, 2012, 335, 400-401.	12.6	58
76	Evaluation of IFITM3 rs12252 Association With Severe Pediatric Influenza Infection. Journal of Infectious Diseases, 2017, 216, 14-21.	4.0	58
77	Functional implications of T cell receptor diversity. Current Opinion in Immunology, 2009, 21, 286-290.	5.5	57
78	NKG2D signaling on CD8+ T cells represses T-bet and rescues CD4-unhelped CD8+ T cell memory recall but not effector responses. Nature Medicine, 2012, 18, 422-428.	30.7	56
79	Consequences of Immunodominant Epitope Deletion for Minor Influenza Virus-Specific CD8+-T-Cell Responses. Journal of Virology, 2005, 79, 4329-4339.	3.4	55
80	An unexpected antibody response to an engineered influenza virus modifies CD8+ T cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2764-2769.	7.1	54
81	Towards integrating extracellular matrix and immunological pathways. Cytokine, 2017, 98, 79-86.	3.2	54
82	Phospholipase D Facilitates Efficient Entry of Influenza Virus, Allowing Escape from Innate Immune Inhibition. Journal of Biological Chemistry, 2014, 289, 25405-25417.	3.4	52
83	Moving Forward: Recent Developments for the Ferret Biomedical Research Model. MBio, 2018, 9, .	4.1	52
84	Hidden Epitopes Emerge in Secondary Influenza Virus-Specific CD8+ T Cell Reponses. Journal of Immunology, 2007, 178, 3091-3098.	0.8	50
85	Epitope-specific TCRÎ ² repertoire diversity imparts no functional advantage on the CD8 ⁺ T cell response to cognate viral peptides. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2034-2039.	7.1	50
86	HLA targeting efficiency correlates with human T-cell response magnitude and with mortality from influenza A infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13492-13497.	7.1	47
87	A multi-valent vaccine approach that elicits broad immunity within an influenza subtype. Vaccine, 2009, 27, 1192-1200.	3.8	46
88	Rapid cloning, expression, and functional characterization of paired αβ and γδT-cell receptor chains from single-cell analysis. Molecular Therapy - Methods and Clinical Development, 2016, 3, 15054.	4.1	45
89	Heightened self-reactivity associated with selective survival, but not expansion, of naÃ ⁻ ve virus-specific CD8 ⁺ T cells in aged mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1333-1338.	7.1	45
90	Combination Therapy Targeting Platelet Activation and Virus Replication Protects Mice against Lethal Influenza Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 689-701.	2.9	45

#	Article	IF	CITATIONS
91	Nucleotide Oligomerization and Binding Domain 2-Dependent Dendritic Cell Activation Is Necessary for Innate Immunity and Optimal CD8 ⁺ T Cell Responses to Influenza A Virus Infection. Journal of Virology, 2014, 88, 8946-8955.	3.4	44
92	Severe Influenza Is Characterized by Prolonged Immune Activation: Results From the SHIVERS Cohort Study. Journal of Infectious Diseases, 2018, 217, 245-256.	4.0	44
93	Identifying T Cell Receptors from High-Throughput Sequencing: Dealing with Promiscuity in TCRα and TCRβ Pairing. PLoS Computational Biology, 2017, 13, e1005313.	3.2	42
94	Detection of Antibodies against Turkey Astrovirus in Humans. PLoS ONE, 2014, 9, e96934.	2.5	42
95	Paired TCRαβ analysis of virusâ€specific CD8 ⁺ T cells exposes diversity in a previously defined †narrow' repertoire. Immunology and Cell Biology, 2015, 93, 804-814.	2.3	40
96	Human Î ³ δ T ell receptor repertoire is shaped by influenza viruses, age and tissue compartmentalisation. Clinical and Translational Immunology, 2019, 8, e1079.	3.8	40
97	A constant companion: immune recognition and response to cytomegalovirus with aging and implications for immune fitness. GeroScience, 2017, 39, 293-303.	4.6	39
98	Reproducible selection of high avidity CD8 ⁺ T-cell clones following secondary acute virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1485-1490.	7.1	38
99	Cytokine Profiles of Severe Influenza Virus-Related Complications in Children. Frontiers in Immunology, 2017, 8, 1423.	4.8	38
100	Characterization of innate responses to influenza virus infection in a novel lung type I epithelial cell model. Journal of General Virology, 2014, 95, 350-362.	2.9	37
101	An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathogens, 2016, 12, e1005804.	4.7	37
102	Human Mucosal-Associated Invariant T Cells in Older Individuals Display Expanded TCRαβ Clonotypes with Potent Antimicrobial Responses. Journal of Immunology, 2020, 204, 1119-1133.	0.8	36
103	Transmission Studies Resume for Avian Flu. Science, 2013, 339, 520-521.	12.6	34
104	Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients. Nature Communications, 2021, 12, 2691.	12.8	34
105	Screening monoclonal antibodies for cross-reactivity in the ferret model of influenza infection. Journal of Immunological Methods, 2008, 336, 71-77.	1.4	33
106	Enhanced Susceptibility of Ago1/3 Double-Null Mice to Influenza A Virus Infection. Journal of Virology, 2012, 86, 4151-4157.	3.4	33
107	A population of proinflammatory T cells coexpresses $\hat{I}\pm\hat{I}^2$ and $\hat{I}^3\hat{I}$ T cell receptors in mice and humans. Journal of Experimental Medicine, 2020, 217, .	8.5	33
108	Single-Cell Analysis of T-Cell Receptor αβ Repertoire. Methods in Molecular Biology, 2015, 1343, 181-197.	0.9	32

#	Article	IF	CITATIONS
109	Maintenance of the EBVâ€specific CD8 ⁺ TCRαβ repertoire in immunosuppressed lung transplant recipients. Immunology and Cell Biology, 2017, 95, 77-86.	2.3	31
110	Physiological Numbers of CD4+ T Cells Generate Weak Recall Responses Following Influenza Virus Challenge. Journal of Immunology, 2010, 184, 1721-1727.	0.8	30
111	Virus-Specific CD8+ T Cells in the Liver: Armed and Ready to Kill. Journal of Immunology, 2007, 178, 2737-2745.	0.8	29
112	T Cell Receptor Clonotype Influences Epitope Hierarchy in the CD8+ T Cell Response to Respiratory Syncytial Virus Infection. Journal of Biological Chemistry, 2011, 286, 4829-4841.	3.4	29
113	Membrane Association of the CD3ε Signaling Domain Is Required for Optimal T Cell Development and Function. Journal of Immunology, 2014, 193, 258-267.	0.8	29
114	Past Life and Future Effects—How Heterologous Infections Alter Immunity to Influenza Viruses. Frontiers in Immunology, 2018, 9, 1071.	4.8	28
115	Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1–Dependent Myeloid Cells. Cancer Research, 2021, 81, 5047-5059.	0.9	28
116	Differential Host Response, Rather Than Early Viral Replication Efficiency, Correlates with Pathogenicity Caused by Influenza Viruses. PLoS ONE, 2013, 8, e74863.	2.5	27
117	A Modular Cytokine Analysis Method Reveals Novel Associations With Clinical Phenotypes and Identifies Sets of Co-signaling Cytokines Across Influenza Natural Infection Cohorts and Healthy Controls. Frontiers in Immunology, 2019, 10, 1338.	4.8	25
118	Resolving SARS-CoV-2 CD4+ TÂcell specificity via reverse epitope discovery. Cell Reports Medicine, 2022, 3, 100697.	6.5	25
119	Oseltamivir Prophylaxis Reduces Inflammation and Facilitates Establishment of Cross-Strain Protective T Cell Memory to Influenza Viruses. PLoS ONE, 2015, 10, e0129768.	2.5	24
120	Respiratory Mucosal Proteome Quantification in Human Influenza Infections. PLoS ONE, 2016, 11, e0153674.	2.5	24
121	Terminal Deoxynucleotidyltransferase Is Required for the Establishment of Private Virus-Specific CD8+ TCR Repertoires and Facilitates Optimal CTL Responses. Journal of Immunology, 2008, 181, 2556-2562.	0.8	23
122	SARS-CoV-2-specific TÂcell memory with common TCRαβ motifs is established in unvaccinated children who seroconvert after infection. Immunity, 2022, 55, 1299-1315.e4.	14.3	23
123	Non-oncogenic Acute Viral Infections Disrupt Anti-cancer Responses and Lead to Accelerated Cancer-Specific Host Death. Cell Reports, 2016, 17, 957-965.	6.4	22
124	A Cell for the Ages: Human γδT Cells across the Lifespan. International Journal of Molecular Sciences, 2020, 21, 8903.	4.1	22
125	SARS-CoV-2 infection results in immune responses in the respiratory tract and peripheral blood that suggest mechanisms of disease severity. Nature Communications, 2022, 13, 2774.	12.8	21
126	Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice. PLoS Pathogens, 2015, 11, e1004642.	4.7	20

#	Article	IF	CITATIONS
127	The human side of influenza. Journal of Leukocyte Biology, 2012, 92, 83-96.	3.3	19
128	Interrogating the relationship between naÃ ⁻ ve and immune antiviral T cell repertoires. Current Opinion in Virology, 2013, 3, 447-451.	5.4	18
129	Discovery of a Highly Selective PLD2 Inhibitor (ML395): A New Probe with Improved Physiochemical Properties and Broadâ€Spectrum Antiviral Activity against Influenza Strains. ChemMedChem, 2014, 9, 2633-2637.	3.2	18
130	Dendritic cells activated by an antiâ€inflammatory agent induce CD4 ⁺ T helper type 2 responses without impairing CD8 ⁺ memory and effector cytotoxic Tâ€lymphocyte responses. Immunology, 2010, 129, 406-417.	4.4	17
131	Selected before selection: A case for inherent antigen bias in the T-cell receptor repertoire. Current Opinion in Systems Biology, 2019, 18, 36-43.	2.6	17
132	Establishment of memory CD8+ T cells with live attenuated influenza virus across different vaccination doses. Journal of General Virology, 2016, 97, 3205-3214.	2.9	17
133	Contemporary Seasonal Influenza A (H1N1) Virus Infection Primes for a More Robust Response To Split Inactivated Pandemic Influenza A (H1N1) Virus Vaccination in Ferrets. Vaccine Journal, 2010, 17, 1998-2006.	3.1	16
134	Host Detection and the Stealthy Phenotype in Influenza Virus Infection. Current Topics in Microbiology and Immunology, 2014, 386, 121-147.	1.1	16
135	Protective Memory Responses Are Modulated by Priming Events prior to Challenge. Journal of Virology, 2010, 84, 1047-1056.	3.4	14
136	Influenza Epitope-Specific CD8+ T Cell Avidity, but Not Cytokine Polyfunctionality, Can Be Determined by TCRβ Clonotype. Journal of Immunology, 2010, 185, 6850-6856.	0.8	13
137	Human Susceptibility to Influenza Infection and Severe Disease. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038711.	6.2	13
138	Potential killers exposed: tracking endogenous influenzaâ€ s pecific CD8 ⁺ T cells. Immunology and Cell Biology, 2018, 96, 1104-1119.	2.3	12
139	Treatment response and outcome of children with T-cell acute lymphoblastic leukemia expressing the gamma-delta T-cell receptor. Oncolmmunology, 2019, 8, 1599637.	4.6	12
140	Combining genotypes and T cell receptor distributions to infer genetic loci determining V(D)J recombination probabilities. ELife, 2022, 11, .	6.0	12
141	ZBP1/DAI-Dependent Cell Death Pathways in Influenza A Virus Immunity and Pathogenesis. Current Topics in Microbiology and Immunology, 2019, , 1.	1.1	11
142	Preexisting memory CD4 T cells in naÃ ⁻ ve individuals confer robust immunity upon hepatitis B vaccination. ELife, 2022, 11, .	6.0	11
143	Seasonal Influenza Vaccination Is the Strongest Correlate of Cross-Reactive Antibody Responses in Migratory Bird Handlers. MBio, 2014, 5, e02107.	4.1	10
144	Host Predictors of Broadly Cross-Reactive Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern Differ Between Infection and Vaccination. Clinical Infectious Diseases, 2022, 75, e705-e714.	5.8	10

#	Article	IF	CITATIONS
145	Overlapping Peptides Elicit Distinct CD8+ T Cell Responses following Influenza A Virus Infection. Journal of Immunology, 2020, 205, 1731-1742.	0.8	9
146	Beryllium-specific CD4+ T cells induced by chemokine neoantigens perpetuate inflammation. Journal of Clinical Investigation, 2021, 131, .	8.2	9
147	Intranasal Influenza Infection of Mice and Methods to Evaluate Progression and Outcome. Methods in Molecular Biology, 2013, 1031, 177-188.	0.9	9
148	Clonally Related CD8+T Cells Responsible for Rapid Population of Both Diffuse Nasal-Associated Lymphoid Tissue and Lung After Respiratory Virus Infection. Journal of Immunology, 2011, 187, 835-841.	0.8	7
149	Bohemian T cell receptors: sketching the repertoires of unconventional lymphocytes. Immunological Reviews, 2018, 284, 79-90.	6.0	7
150	Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity. Cell Reports, 2022, 38, 110482.	6.4	7
151	Antigen cross-presentation in young tumor-bearing hosts promotes CD8 ⁺ T cell terminal differentiation. Science Immunology, 2022, 7, eabf6136.	11.9	5
152	The expanding role of systems immunology in decoding the T cell receptor repertoire. Current Opinion in Systems Biology, 2018, 12, 37-45.	2.6	4
153	Activated CD4+ TÂcells and CD14hiCD16+ monocytes correlate with antibody response following influenza virus infection in humans. Cell Reports Medicine, 2021, 2, 100237.	6.5	4
154	Immunity to Influenza. Preventing Infection and Regulating Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 248-251.	5.6	3
155	One hundred years of (influenza) immunopathology. Advances in Virus Research, 2020, 107, 247-284.	2.1	3
156	Nasal Wash Cytokines during Respiratory Viral Infection in Pediatric Allogeneic Hematopoietic Cell-Transplant Recipients. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 349-361.	2.9	2
157	The Public Face and Private Lives of T Cell Receptor Repertoires. , 2021, , 171-202.		2
158	Surveillance states. Nature Structural and Molecular Biology, 2017, 24, 339-341.	8.2	1