
## Jisu Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12152083/publications.pdf Version: 2024-02-01



μευ Ηονις

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Hidden Potential of Polysilsesquioxane for Highâ€ <i>k</i> : Analysis of the Origin of its Dielectric<br>Nature and Practical Lowâ€Voltageâ€Operating Applications beyond the Unit Device. Advanced Functional<br>Materials, 2022, 32, 2104030.     | 14.9 | 13        |
| 2  | Electrohydrodynamic-Jet-Printed Phthalimide-Derived Conjugated Polymers for Organic Field-Effect<br>Transistors and Logic Gates. ACS Applied Materials & Interfaces, 2022, 14, 7073-7081.                                                               | 8.0  | 12        |
| 3  | Screen Printing of Silver and Carbon Nanotube Composite Inks for Flexible and Reliable Organic<br>Integrated Devices. ACS Applied Nano Materials, 2022, 5, 4801-4811.                                                                                   | 5.0  | 11        |
| 4  | Electrohydrodynamic jet printing of small-molecule semiconductor crystals on chemically patterned<br>surface for high-performance organic field-effect transistors. Materials Chemistry and Physics, 2022,<br>285, 126165.                              | 4.0  | 9         |
| 5  | Molecular Engineering of Printed Semiconducting Blends to Develop Organic Integrated Circuits:<br>Crystallization, Charge Transport, and Device Application Analyses. ACS Applied Materials &<br>Interfaces, 2022, 14, 23678-23691.                     | 8.0  | 4         |
| 6  | Key Roles of Trace Oxygen Treatment for Highâ€Performance Znâ€Doped Cul pâ€Channel Transistors.<br>Advanced Electronic Materials, 2021, 7, .                                                                                                            | 5.1  | 17        |
| 7  | Printable Ultraâ€Flexible Fluorinated Organic–Inorganic Nanohybrid Sol–Gel Derived Gate Dielectrics<br>for Highly Stable Organic Thinâ€Film Transistors and Other Practical Applications. Advanced Functional<br>Materials, 2021, 31, 2009539.          | 14.9 | 27        |
| 8  | Overview of recent progress in electrohydrodynamic jet printing in practical printed electronics:<br>focus on the variety of printable materials for each component. Materials Advances, 2021, 2, 5593-5615.                                            | 5.4  | 42        |
| 9  | Effect of Monovalent Metal Iodide Additives on the Optoelectric Properties of Two-Dimensional Sn-Based Perovskite Films. Chemistry of Materials, 2021, 33, 2498-2505.                                                                                   | 6.7  | 28        |
| 10 | Selenium-Substituted Non-Fullerene Acceptors: A Route to Superior Operational Stability for Organic<br>Bulk Heterojunction Solar Cells. ACS Nano, 2021, 15, 7700-7712.                                                                                  | 14.6 | 36        |
| 11 | Advanced Side-Impermeability Characteristics of Fluorinated Organic-Inorganic Nanohybrid Materials for Thin Film Encapsulation. Macromolecular Research, 2021, 29, 313-320.                                                                             | 2.4  | 3         |
| 12 | High-Performance Layered Perovskite Transistors and Phototransistors by Binary Solvent<br>Engineering. Chemistry of Materials, 2021, 33, 1174-1181.                                                                                                     | 6.7  | 29        |
| 13 | "Dragging mode―electrohydrodynamic jet printing of polymer-wrapped semiconducting single-walled<br>carbon nanotubes for NO gas-sensing field-effect transistors. Journal of Materials Chemistry C, 2021,<br>9, 15804-15812.                             | 5.5  | 8         |
| 14 | Mass-Synthesized Solution-Processable Polyimide Gate Dielectrics for Electrically Stable Operating OFETs and Integrated Circuits. Polymers, 2021, 13, 3715.                                                                                             | 4.5  | 1         |
| 15 | Comparison of semiconductor growth and charge transport on hydrophobic polymer dielectrics of organic field-effect transistors: Cytop vs. polystyrene. Organic Electronics, 2020, 77, 105485.                                                           | 2.6  | 19        |
| 16 | Facile Photo-cross-linking System for Polymeric Gate Dielectric Materials toward Solution-Processed<br>Organic Field-Effect Transistors: Role of a Cross-linker in Various Polymer Types. ACS Applied<br>Materials & Interfaces, 2020, 12, 30600-30615. | 8.0  | 33        |
| 17 | Non-lithographic direct patterning of carbon nanomaterial electrodes via<br>electrohydrodynamic-printed wettability patterns by polymer brush for fabrication of organic<br>field-effect transistor. Applied Surface Science, 2020, 515, 145989.        | 6.1  | 24        |
| 18 | Understanding of copolymers containing pyridine and selenophene simultaneously and their polarity conversion in transistors. Materials Chemistry Frontiers, 2020, 4, 3567-3577.                                                                         | 5.9  | 6         |

Jisu Hong

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Highâ€Performance and Reliable Leadâ€Free Layeredâ€Perovskite Transistors. Advanced Materials, 2020, 32,<br>e2002717.                                                                                                            | 21.0 | 86        |
| 20 | Direct Printing of Asymmetric Electrodes for Improving Charge Injection/Extraction in Organic Electronics. ACS Applied Materials & amp; Interfaces, 2020, 12, 33999-34010.                                                       | 8.0  | 13        |
| 21 | Solution-Processed Flexible Gas Barrier Films for Organic Field-Effect Transistors. Macromolecular<br>Research, 2020, 28, 782-788.                                                                                               | 2.4  | 5         |
| 22 | Highly stable flexible organic field-effect transistors with Parylene-C gate dielectrics on a flexible substrate. Organic Electronics, 2019, 75, 105391.                                                                         | 2.6  | 17        |
| 23 | Side chain engineering in DTBDT-based small molecules for efficient organic photovoltaics.<br>Nanoscale, 2019, 11, 13845-13852.                                                                                                  | 5.6  | 2         |
| 24 | Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal,<br>2019, 25, 12233-12233.                                                                                                      | 3.3  | 0         |
| 25 | Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal,<br>2019, 25, 12316-12324.                                                                                                      | 3.3  | 5         |
| 26 | Facile and Microcontrolled Blade Coating of Organic Semiconductor Blends for Uniaxial Crystal<br>Alignment and Reliable Flexible Organic Field-Effect Transistors. ACS Applied Materials &<br>Interfaces, 2019, 11, 13481-13490. | 8.0  | 38        |
| 27 | Enhanced chemical and physical properties of PEDOT doped with anionic polyelectrolytes prepared from acrylic derivatives and application to nanogenerators. Nanoscale Advances, 2019, 1, 4384-4392.                              | 4.6  | 4         |
| 28 | Morphology Driven by Molecular Structure of Thiazoleâ€Based Polymers for Use in Fieldâ€Effect<br>Transistors and Solar Cells. Chemistry - A European Journal, 2019, 25, 649-656.                                                 | 3.3  | 9         |
| 29 | End-group tuning of DTBDT-based small molecules for organic photovoltaics. Dyes and Pigments, 2018, 157, 93-100.                                                                                                                 | 3.7  | 15        |
| 30 | Synthesis and characterization of new TPD-based copolymers and applications in bulk heterojunction solar cells. Macromolecular Research, 2018, 26, 29-34.                                                                        | 2.4  | 17        |
| 31 | A donor–acceptor semiconducting polymer with a random configuration for efficient,<br>green-solvent-processable flexible solar cells. Journal of Materials Chemistry A, 2018, 6, 24580-24587.                                    | 10.3 | 20        |
| 32 | Two TPD-Based Conjugated Polymers: Synthesis and Photovoltaic Applications as Donor Materials.<br>Macromolecular Research, 2018, 26, 1193-1199.                                                                                  | 2.4  | 8         |
| 33 | Understanding Structure–Property Relationships in All-Small-Molecule Solar Cells Incorporating a<br>Fullerene or Nonfullerene Acceptor. ACS Applied Materials & Interfaces, 2018, 10, 36037-36046.                               | 8.0  | 21        |
| 34 | A novel small molecule based on dithienophosphole oxide for bulk heterojunction solar cells without pre- or post-treatments. Dyes and Pigments, 2017, 142, 516-523.                                                              | 3.7  | 11        |
| 35 | All-Small-Molecule Solar Cells Incorporating NDI-Based Acceptors: Synthesis and Full<br>Characterization. ACS Applied Materials & Interfaces, 2017, 9, 44667-44677.                                                              | 8.0  | 29        |
| 36 | Two BDT-TPP-Based Polymer Semiconductors: It's Characterization and Application for Photovoltaics.<br>Journal of Nanoscience and Nanotechnology, 2017, 17, 5656-5661.                                                            | 0.9  | 0         |

Jisu Hong

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Two dibenzo[Def, Mno]chryseneâ€based polymeric semiconductors: Surprisingly opposite device<br>performances in fieldâ€effect transistors and solar cells. Journal of Polymer Science Part A, 2016, 54,<br>2559-2570. | 2.3 | 14        |
| 38 | Thermally Stable Dibenzo[def,mno]chryseneâ€Based Polymer Solar Cells: Effect of Thermal Annealing on the Morphology and Photovoltaic Performances. Macromolecular Chemistry and Physics, 2016, 217, 2116-2124.       | 2.2 | 5         |
| 39 | The importance of the polymer molecular weight and the processing solvent in PBDTTT-C:PCBM bulk heterojunction solar cells: Their effects on the nanostructural active texture. Solar Energy, 2016, 140, 27-33.      | 6.1 | 4         |
| 40 | Schematic Studies on the Structural Properties and Device Physics of All Small Molecule Ternary Photovoltaic Cells. ACS Applied Materials & Interfaces, 2015, 7, 21423-21432.                                        | 8.0 | 8         |