Gopinathan M Anilkumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12150475/publications.pdf

Version: 2024-02-01

33 papers

1,385 citations

20 h-index 33 g-index

33 all docs 33 docs citations

33 times ranked 1994 citing authors

#	Article	IF	CITATIONS
1	Void-size-matched hierarchical 3D titania flowers in porous carbon as an electrode for high-density supercapacitive charge storage. Journal of Alloys and Compounds, 2021, 858, 157649.	5 . 5	14
2	An enhanced electrochemical CO ₂ reduction reaction on the SnO _x –PdO surface of SnPd nanoparticles decorated on N-doped carbon fibers. Catalysis Science and Technology, 2021, 11, 143-151.	4.1	16
3	Dual Hybrid Energy Storage Device with a Battery–Electrochemical Capacitor Hybrid Cathode and a Battery-Type Anode. Energy & Fuels, 2021, 35, 13438-13448.	5.1	5
4	Tuning Palladium Nickel Phosphide toward Efficient Oxygen Evolution Performance. ACS Applied Energy Materials, 2020, 3, 879-888.	5.1	21
5	Void Space Control in Porous Carbon for High-Density Supercapacitive Charge Storage. Energy & Samp; Fuels, 2020, 34, 5072-5083.	5.1	52
6	Template assisted synthesis of Ni,N co-doped porous carbon from Ni incorporated ZIF-8 frameworks for electrocatalytic oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 12343-12354.	2.8	15
7	Binary Pdâ^'Ni Nanoalloy Particles over Carbon Support with Superior Alkaline Formate Fuel Electrooxidation Performance. ChemCatChem, 2019, 11, 4731-4737.	3.7	29
8	Electro-oxidation competency of palladium nanocatalysts over ceria–carbon composite supports during alkaline ethylene glycol oxidation. Catalysis Science and Technology, 2019, 9, 493-501.	4.1	28
9	Melamine formaldehyde–metal organic gel interpenetrating polymer network derived intrinsic Fe–N-doped porous graphitic carbon electrocatalysts for oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 18690-18701.	2.8	19
10	Energy-Efficient Templating Method for the Industrial Production of Porous Carbon Particles by a Spray Pyrolysis Process Using Poly(methyl methacrylate). Industrial & Engineering Chemistry Research, 2018, 57, 11335-11341.	3.7	16
11	Cobalt-Modified Palladium Bimetallic Catalyst: A Multifunctional Electrocatalyst with Enhanced Efficiency and Stability toward the Oxidation of Ethanol and Formate in Alkaline Medium. ACS Applied Energy Materials, 2018, 1, 4140-4149.	5.1	67
12	Morphological Ensembles of Nâ€Doped Porous Carbon Derived from ZIFâ€8/Feâ€Graphene Nanocomposites: Processing and Electrocatalytic Studies. ChemistrySelect, 2018, 3, 8688-8697.	1.5	8
13	One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10730-10742.	8.0	88
14	Direct synthesis of a carbon nanotube interpenetrated doped porous carbon alloy as a durable Pt-free electrocatalyst for the oxygen reduction reaction in an alkaline medium. Sustainable Energy and Fuels, 2017, 1, 1524-1532.	4.9	16
15	Chitosan Intercalated Metal Organic Gel as a Green Precursor of Fe Entrenched and Fe Distributed N-Doped Mesoporous Graphitic Carbon for Oxygen Reduction Reaction. ChemistrySelect, 2017, 2, 8762-8770.	1.5	12
16	Morphologyâ€dependent electrocatalytic activity of nanostructured Pt/C particles from hybrid aerosol–colloid process. AICHE Journal, 2016, 62, 440-450.	3 . 6	21
17	Graphene Oxide Sheathed ZIF-8 Microcrystals: Engineered Precursors of Nitrogen-Doped Porous Carbon for Efficient Oxygen Reduction Reaction (ORR) Electrocatalysis. ACS Applied Materials & amp; Interfaces, 2016, 8, 29373-29382.	8.0	139
18	Aniosotropically Organized LDH on PVDF: A Geometrically Templated Electrospun Substrate for Advanced Anion Conducting Membranes. ACS Applied Materials & Interfaces, 2015, 7, 6397-6401.	8.0	28

#	Article	IF	CITATIONS
19	Morphology control of hierarchical porous carbon particles from phenolic resin and polystyrene latex template via aerosol process. Carbon, 2015, 84, 281-289.	10.3	47
20	Mg–Al layered double hydroxides: a correlation between synthesis-structure and ionic conductivity. RSC Advances, 2014, 4, 41051-41058.	3.6	22
21	Aerosol Synthesis of Self-Organized Nanostructured Hollow and Porous Carbon Particles Using a Dual Polymer System. Langmuir, 2014, 30, 11257-11262.	3.5	33
22	Ultrahigh oxygen reduction activity of Pt/nitrogen-doped porous carbon microspheres prepared via spray-drying. Journal of Power Sources, 2013, 229, 58-64.	7.8	31
23	In situ growth of Pt nanoparticles on electrospun SnO2 fibers for anode electrocatalyst application. Materials Letters, 2013, 105, 202-205.	2.6	9
24	Zn2+ substitution effects in layered double hydroxide (Mg($1\hat{a}^{\prime}$ x)Znx)2Al: textural properties, water content and ionic conductivity. Journal of Materials Chemistry A, 2013, 1, 13348.	10.3	20
25	Electrospun Pt/SnO2 nanofibers as an excellent electrocatalysts for hydrogen oxidation reaction with ORR-blocking characteristic. Catalysis Communications, 2013, 33, 11-14.	3.3	33
26	Mg–Al layered double hydroxides containing glycine betaine as low humidity-dependent anion conducting electrolyte material for Solid State Alkaline Fuel Cell (SAFC). Journal of Power Sources, 2013, 230, 225-229.	7.8	26
27	Self-Organized Macroporous Carbon Structure Derived from Phenolic Resin via Spray Pyrolysis for High-Performance Electrocatalyst. ACS Applied Materials & Electrocatalyst. The Electrocatalyst. ACS Applied Materials & Electrocatalyst. The Electrocatalysts of Electrocatalysts. The Electrocatalysts of Electrocatalysts of Electrocatalysts of Electrocatalysts of Electrocatalysts. The Electrocatalysts of Electrocatalysts of Electrocatalysts of Electrocatalysts of Electrocatalysts. The Electrocatalysts of	8.0	38
28	Nanostructured design of electrocatalyst support materials for high-performance PEM fuel cell application. Journal of Power Sources, 2012, 203, 26-33.	7.8	39
29	Proton conducting phosphated zirconia–sulfonated polyether sulfone nanohybrid electrolyte for low humidity, wide-temperature PEMFC operation. Electrochemistry Communications, 2006, 8, 133-136.	4.7	55
30	Formation of nanoporous and nanocrystalline anatase films by pyrolysis of PEO–TiO2 hybrid films. Journal of Crystal Growth, 2006, 286, 173-177.	1.5	10
31	Transformation of highly ordered large pore silica mesophases (Fm3m, lm3m and p6mm) in a ternary triblock copolymer–butanol–water system. Chemical Communications, 2004, , 1536-1537.	4.1	109
32	Large Cage Face-Centered-CubicFm3mMesoporous Silica:Â Synthesis and Structure. Journal of Physical Chemistry B, 2003, 107, 14296-14300.	2.6	296
33	Influence of nanoparticle seeding on the phase formation kinetics of sol-gel-derived Sr _{0.7} Bi _{2.4} Ta ₂ O ₉ thin films. Journal of Materials Research, 2003, 18, 387-395.	2.6	23