Zhangdui Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12144647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wireless Communications, 2012, 19, 96-104.	9.0	562
2	High-Speed Railway Communications: From GSM-R to LTE-R. IEEE Vehicular Technology Magazine, 2016, 11, 49-58.	3.4	240
3	Joint Beamforming and Power-Splitting Control in Downlink Cooperative SWIPT NOMA Systems. IEEE Transactions on Signal Processing, 2017, 65, 4874-4886.	5.3	209
4	On Millimeter Wave and THz Mobile Radio Channel for Smart Rail Mobility. IEEE Transactions on Vehicular Technology, 2017, 66, 5658-5674.	6.3	190
5	On Indoor Millimeter Wave Massive MIMO Channels: Measurement and Simulation. IEEE Journal on Selected Areas in Communications, 2017, 35, 1678-1690.	14.0	188
6	Short-Packet Downlink Transmission With Non-Orthogonal Multiple Access. IEEE Transactions on Wireless Communications, 2018, 17, 4550-4564.	9.2	179
7	Physical Layer Security in UAV Systems: Challenges and Opportunities. IEEE Wireless Communications, 2019, 26, 40-47.	9.0	176
8	Vehicle-to-Vehicle Propagation Models With Large Vehicle Obstructions. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 2237-2248.	8.0	171
9	Geometrical-Based Modeling for Millimeter-Wave MIMO Mobile-to-Mobile Channels. IEEE Transactions on Vehicular Technology, 2018, 67, 2848-2863.	6.3	166
10	Measurements and Analysis of Propagation Channels in High-Speed Railway Viaducts. IEEE Transactions on Wireless Communications, 2013, 12, 794-805.	9.2	164
11	An Empirical Path Loss Model and Fading Analysis for High-Speed Railway Viaduct Scenarios. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 808-812.	4.0	121
12	A Kernel-Power-Density-Based Algorithm for Channel Multipath Components Clustering. IEEE Transactions on Wireless Communications, 2017, 16, 7138-7151.	9.2	119
13	Channel Measurement, Simulation, and Analysis for High-Speed Railway Communications in 5G Millimeter-Wave Band. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 3144-3158.	8.0	117
14	Measurement of Distributed Antenna Systems at 2.4 GHz in a Realistic Subway Tunnel Environment. IEEE Transactions on Vehicular Technology, 2012, 61, 834-837.	6.3	112
15	Short-Term Fading Behavior in High-Speed Railway Cutting Scenario: Measurements, Analysis, and Statistical Models. IEEE Transactions on Antennas and Propagation, 2013, 61, 2209-2222.	5.1	110
16	Towards Realistic High-Speed Train Channels at 5G Millimeter-Wave Band—Part I: Paradigm, Significance Analysis, and Scenario Reconstruction. IEEE Transactions on Vehicular Technology, 2018, 67, 9112-9128.	6.3	109
17	Queuing models with applications to mode selection in device-to-device communications underlaying cellular networks. IEEE Transactions on Wireless Communications, 2014, 13, 6697-6715.	9.2	98
18	Stochastic Channel Modeling for Kiosk Applications in the Terahertz Band. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 502-513.	3.1	98

#	Article	IF	CITATIONS
19	Joint Beamforming Design and Time Allocation for Wireless Powered Communication Networks. IEEE Communications Letters, 2014, 18, 1783-1786.	4.1	95
20	Characterization of Quasi-Stationarity Regions for Vehicle-to-Vehicle Radio Channels. IEEE Transactions on Antennas and Propagation, 2015, 63, 2237-2251.	5.1	95
21	Angle Domain Channel Estimation in Hybrid Millimeter Wave Massive MIMO Systems. IEEE Transactions on Wireless Communications, 2018, 17, 8165-8179.	9.2	89
22	Joint Beamforming and Power Allocation in Downlink NOMA Multiuser MIMO Networks. IEEE Transactions on Wireless Communications, 2018, 17, 5367-5381.	9.2	89
23	Global Energy Efficiency in Secure MISO SWIPT Systems With Non-Linear Power-Splitting EH Model. IEEE Journal on Selected Areas in Communications, 2019, 37, 216-232.	14.0	88
24	Assessment of LTE-R Using High Speed Railway Channel Model. , 2011, , .		87
25	MPBC: A Mobility Prediction-Based Clustering Scheme for Ad Hoc Networks. IEEE Transactions on Vehicular Technology, 2011, 60, 4549-4559.	6.3	85
26	Machine Learning-Enabled LOS/NLOS Identification for MIMO Systems in Dynamic Environments. IEEE Transactions on Wireless Communications, 2020, 19, 3643-3657.	9.2	85
27	Propagation Measurements and Analysis for Train Stations of High-Speed Railway at 930 MHz. IEEE Transactions on Vehicular Technology, 2014, 63, 3499-3516.	6.3	84
28	Clustering Enabled Wireless Channel Modeling Using Big Data Algorithms. , 2018, 56, 177-183.		84
29	A Wideband Non-Stationary Air-to-Air Channel Model for UAV Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 1214-1226.	6.3	78
30	RF Energy Harvesting Wireless Powered Sensor Networks for Smart Cities. IEEE Access, 2017, 5, 9348-9358.	4.2	77
31	Energy Efficiency in Secure IRS-Aided SWIPT. IEEE Wireless Communications Letters, 2020, 9, 1884-1888.	5.0	76
32	Vehicle-to-Vehicle Radio Channel Characterization in Crossroad Scenarios. IEEE Transactions on Vehicular Technology, 2016, 65, 5850-5861.	6.3	74
33	5-GHz Obstructed Vehicle-to-Vehicle Channel Characterization for Internet of Intelligent Vehicles. IEEE Internet of Things Journal, 2019, 6, 100-110.	8.7	74
34	Impact of UAV Rotation on MIMO Channel Characterization for Air-to-Ground Communication Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 12418-12431.	6.3	72
35	Channel Characterization for Intra-Wagon Communication at 60 and 300 GHz Bands. IEEE Transactions on Vehicular Technology, 2019, 68, 5193-5207.	6.3	68
36	Deterministic Propagation Modeling for the Realistic High-Speed Railway Environment. , 2013, , .		67

3

#	Article	IF	CITATIONS
37	Measurements and Analysis of Large-Scale Fading Characteristics in Curved Subway Tunnels at 920 MHz, 2400 MHz, and 5705 MHz. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2393-2405.	8.0	67
38	A Dynamic Wideband Directional Channel Model for Vehicle-to-Vehicle Communications. IEEE Transactions on Industrial Electronics, 2015, 62, 7870-7882.	7.9	66
39	On the Clustering of Radio Channel Impulse Responses Using Sparsity-Based Methods. IEEE Transactions on Antennas and Propagation, 2016, 64, 2465-2474.	5.1	66
40	Two-Dimension Direction-of-Arrival Estimation for Massive MIMO Systems. IEEE Access, 2015, 3, 2122-2128.	4.2	65
41	Towards Realistic High-Speed Train Channels at 5G Millimeter-Wave Band—Part II: Case Study for Paradigm Implementation. IEEE Transactions on Vehicular Technology, 2018, 67, 9129-9144.	6.3	62
42	Performance Analysis of Device-to-Device Communications with Dynamic Interference Using Stochastic Petri Nets. IEEE Transactions on Wireless Communications, 2013, 12, 6121-6141.	9.2	60
43	Measurement, Simulation, and Characterization of Train-to-Infrastructure Inside-Station Channel at the Terahertz Band. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 291-306.	3.1	60
44	Radio Wave Propagation Scene Partitioning for High-Speed Rails. International Journal of Antennas and Propagation, 2012, 2012, 1-7.	1.2	59
45	Artificial Intelligence Enabled Radio Propagation for Communications—Part II: Scenario Identification and Channel Modeling. IEEE Transactions on Antennas and Propagation, 2022, 70, 3955-3969.	5.1	58
46	Optimal Design of SWIPT Systems With Multiple Heterogeneous Users Under Non-linear Energy Harvesting Model. IEEE Access, 2017, 5, 11479-11489.	4.2	56
47	Mobility Model-Based Non-Stationary Mobile-to-Mobile Channel Modeling. IEEE Transactions on Wireless Communications, 2018, 17, 4388-4400.	9.2	54
48	A Cluster-Based Three-Dimensional Channel Model for Vehicle-to-Vehicle Communications. IEEE Transactions on Vehicular Technology, 2019, 68, 5208-5220.	6.3	54
49	Robust Transmit Beamforming With Artificial Redundant Signals for Secure SWIPT System Under Non-Linear EH Model. IEEE Transactions on Wireless Communications, 2018, 17, 2218-2232.	9.2	53
50	Finite-State Markov Modeling for High-Speed Railway Fading Channels. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 954-957.	4.0	52
51	Wireless Channel Sparsity: Measurement, Analysis, and Exploitation in Estimation. IEEE Wireless Communications, 2021, 28, 113-119.	9.0	52
52	Complete Propagation Model in Tunnels. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 741-744.	4.0	48
53	Propagation Measurements and Modeling of Crossing Bridges on High-Speed Railway at 930 MHz. IEEE Transactions on Vehicular Technology, 2014, 63, 502-517.	6.3	48

54 Path loss models in viaduct and plain scenarios of the High-speed Railway. , 2010, , .

47

#	Article	IF	CITATIONS
55	Advanced Dynamic Channel Access Strategy in Spectrum Sharing 5G Systems. IEEE Wireless Communications, 2017, 24, 74-80.	9.0	43
56	Stochastic Delay Analysis for Train Control Services in Next-Generation High-Speed Railway Communications System. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 48-64.	8.0	42
57	Finite state Markov modelling for high speed railway wireless communication channel. , 2012, , .		40
58	Vehicle-Based Cloudlet Relaying for Mobile Computation Offloading. IEEE Transactions on Vehicular Technology, 2018, 67, 11181-11191.	6.3	39
59	Machine-Learning-Based Data Processing Techniques for Vehicle-to-Vehicle Channel Modeling. IEEE Communications Magazine, 2019, 57, 109-115.	6.1	39
60	Channel Characteristics in High-Speed Railway: A Survey of Channel Propagation Properties. IEEE Vehicular Technology Magazine, 2015, 10, 67-78.	3.4	37
61	A survey on high-speed railway communications: A radio resource management perspective. Computer Communications, 2016, 86, 12-28.	5.1	37
62	Power Minimization in SWIPT Networks With Coexisting Power-Splitting and Time-Switching Users Under Nonlinear EH Model. IEEE Internet of Things Journal, 2019, 6, 8853-8869.	8.7	37
63	Artificial Intelligence Enabled Radio Propagation for Communications—Part I: Channel Characterization and Antenna-Channel Optimization. IEEE Transactions on Antennas and Propagation, 2022, 70, 3939-3954.	5.1	36
64	Fog-Assisted Multiuser SWIPT Networks: Local Computing or Offloading. IEEE Internet of Things Journal, 2019, 6, 5246-5264.	8.7	35
65	Measurements and Cluster-Based Modeling of Vehicle-to-Vehicle Channels With Large Vehicle Obstructions. IEEE Transactions on Wireless Communications, 2020, 19, 5860-5874.	9.2	35
66	Empirical Models for Extra Propagation Loss of Train Stations on High-Speed Railway. IEEE Transactions on Antennas and Propagation, 2014, 62, 1395-1408.	5.1	34
67	Relay-Assisted and QoS Aware Scheduling to Overcome Blockage in mmWave Backhaul Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 1733-1744.	6.3	34
68	Channel Sounding and Ray Tracing for Intrawagon Scenario at mmWave and Sub-mmWave Bands. IEEE Transactions on Antennas and Propagation, 2021, 69, 1007-1019.	5.1	34
69	Measurements and analysis of short-term fading behavior for high-speed rail viaduct scenario. , 2012, ,		33
70	Rail Inspection Meets Big Data: Methods and Trends. , 2015, , .		33
71	Wireless Powered Sensor Networks: Collaborative Energy Beamforming Considering Sensing and Circuit Power Consumption. IEEE Wireless Communications Letters, 2016, 5, 344-347.	5.0	33
72	Max-Min Energy Balance in Wireless-Powered Hierarchical Fog-Cloud Computing Networks. IEEE Transactions on Wireless Communications, 2020, 19, 7064-7080.	9.2	33

#	Article	IF	CITATIONS
73	Analysis of the Relation Between Fresnel Zone and Path Loss Exponent Based on Two-Ray Model. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 208-211.	4.0	32
74	Shadow Fading Correlation in High-Speed Railway Environments. IEEE Transactions on Vehicular Technology, 2014, , 1-1.	6.3	32
75	Influence of Typical Railway Objects in a mmWave Propagation Channel. IEEE Transactions on Vehicular Technology, 2018, 67, 2880-2892.	6.3	32
76	Semi-Deterministic Path-Loss Modeling for Viaduct and Cutting Scenarios of High-Speed Railway. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 789-792.	4.0	31
77	Cooperative Modulation Classification for Multipath Fading Channels via Expectation-Maximization. IEEE Transactions on Wireless Communications, 2017, 16, 6698-6711.	9.2	30
78	Coded Tandem Spreading Multiple Access for Massive Machine-Type Communications. IEEE Wireless Communications, 2018, 25, 75-81.	9.0	30
79	Coordinated Beamforming With Artificial Noise for Secure SWIPT Under Non-Linear EH Model: Centralized and Distributed Designs. IEEE Journal on Selected Areas in Communications, 2018, 36, 1544-1563.	14.0	30
80	Machine-Learning-Based Fast Angle-of-Arrival Recognition for Vehicular Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 1592-1605.	6.3	30
81	Scenario modules, rayâ€ŧracing simulations and analysis of millimetre wave and terahertz channels for smart rail mobility. IET Microwaves, Antennas and Propagation, 2018, 12, 501-508.	1.4	27
82	Machine-Learning-Based Scenario Identification Using Channel Characteristics in Intelligent Vehicular Communications. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3961-3974.	8.0	26
83	FIVE-ZONE PROPAGATION MODEL FOR LARGE-SIZE VEHICLES INSIDE TUNNELS. Progress in Electromagnetics Research, 2013, 138, 389-405.	4.4	25
84	Propagation channel measurements and analysis at 2.4 GHz in subway tunnels. IET Microwaves, Antennas and Propagation, 2013, 7, 934-941.	1.4	24
85	A Measurement-Based Stochastic Model for High-Speed Railway Channels. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 1120-1135.	8.0	24
86	Cluster-Based Nonstationary Channel Modeling for Vehicle-to-Vehicle Communications. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1419-1422.	4.0	24
87	Cluster-Based 3-D Channel Modeling for Massive MIMO in Subway Station Environment. IEEE Access, 2018, 6, 6257-6272.	4.2	24
88	Geometry-Cluster-Based Stochastic MIMO Model for Vehicle-to-Vehicle Communications in Street Canyon Scenarios. IEEE Transactions on Wireless Communications, 2021, 20, 755-770.	9.2	24
89	Scenario modules and ray-tracing simulations of millimeter wave and terahertz channels for smart rail mobility. , 2017, , .		22
90	SWIPT-Aware Fog Information Processing: Local Computing vs. Fog Offloading. Sensors, 2018, 18, 3291.	3.8	22

6

#	Article	IF	CITATIONS
91	Propagation measurements and analysis of fading behavior for high speed rail cutting scenarios. , 2012, , .		21
92	Modeling of the Division Point of Different Propagation Mechanisms in the Near-Region Within Arched Tunnels. Wireless Personal Communications, 2013, 68, 489-505.	2.7	21
93	Reducing the Cost of High-Speed Railway Communications: From the Propagation Channel View. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 2050-2060.	8.0	21
94	Measurement and Analysis of Extra Propagation Loss of Tunnel Curve. IEEE Transactions on Vehicular Technology, 2016, 65, 1847-1858.	6.3	21
95	A Cluster-Based Channel Model for Massive MIMO Communications in Indoor Hotspot Scenarios. IEEE Transactions on Wireless Communications, 2019, 18, 3856-3870.	9.2	21
96	V2V channel characterization and modeling for underground parking garages. China Communications, 2019, 16, 93-105.	3.2	21
97	Channel Characterization and Capacity Analysis for THz Communication Enabled Smart Rail Mobility. IEEE Transactions on Vehicular Technology, 2021, 70, 4065-4080.	6.3	21
98	Application-Aware Offloading Policy Using SMDP in Vehicular Fog Computing Systems. , 2018, , .		20
99	SWIPT-Enabled Full-Duplex NOMA Networks With Full and Partial CSI. IEEE Transactions on Green Communications and Networking, 2020, 4, 804-818.	5.5	19
100	A 3D Geometry-Based THz Channel Model for 6G Ultra Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2022, 71, 2251-2266.	6.3	19
101	Resource Allocation in Wireless Powered Sensor Networks With Circuit Energy Consumption Constraints. IEEE Access, 2017, 5, 22775-22782.	4.2	18
102	On 3D Cluster-Based Channel Modeling for Large-Scale Array Communications. IEEE Transactions on Wireless Communications, 2019, 18, 4902-4914.	9.2	18
103	Lowâ€altitude UAV airâ€ground propagation channel measurement and analysis in a suburban environment at 3.9 GHz. IET Microwaves, Antennas and Propagation, 2019, 13, 1503-1508.	1.4	18
104	Continuous Phase Modulation Classification via Baum-Welch Algorithm. IEEE Communications Letters, 2018, 22, 1390-1393.	4.1	17
105	Stochastic Channel Modeling for Railway Tunnel Scenarios at 25ÂGHz. ETRI Journal, 2018, 40, 39-50.	2.0	16
106	Channel Characterization and Hybrid Modeling for Millimeter-Wave Communications in Metro Train. IEEE Transactions on Vehicular Technology, 2020, 69, 12408-12417.	6.3	16
107	Channel measurements and modeling for 5G communication systems at 3.5 GHz band. , 2016, , .		15
108	Challenges and chances for smart rail mobility at mmWave and THz bands from the channels		15

viewpoint., 2017,,.

#	Article	IF	CITATIONS
109	Distance-Dependent Model of Ricean K-Factors in High-Speed Rail Viaduct Channel. , 2012, , .		14
110	Excess Propagation Loss of Semi-Closed Obstacles for Inter/Intra-Device Communications in the Millimeter-Wave Range. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 676-690.	2.2	14
111	Propagation Mechanism Analysis Before the Break Point Inside Tunnels. , 2011, , .		13
112	Impact of Meteorological Attenuation on Channel Characterization at 300 GHz. Electronics (Switzerland), 2020, 9, 1115.	3.1	13
113	Broadband Channel Long Delay Cluster Measurements and Analysis at 2.4GHz in Subway Tunnels. , 2011, , , \cdot		12
114	Measurements and Modeling of Cross-Correlation Property of Shadow Fading in High-Speed Railways. , 2014, , .		12
115	Joint Beamforming and Power Allocation Design in Downlink Non-Orthogonal Multiple Access Systems. , 2016, , .		12
116	Energy-Efficient Collaborative Offloading in NOMA-Enabled Fog Computing for Internet of Things. IEEE Internet of Things Journal, 2022, 9, 13794-13807.	8.7	12
117	Integrity-Oriented Content Offloading in Vehicular Sensor Network. IEEE Access, 2017, 5, 4140-4153.	4.2	11
118	Vehicle-to-vehicle channel models with large vehicle obstructions. , 2014, , .		10
119	Utility-based resource allocation in high-speed railway wireless networks. Eurasip Journal on Wireless Communications and Networking, 2014, 2014, .	2.4	10
120	An Automatic Clustering Algorithm for Multipath Components Based on Kernel-Power-Density. , 2017, ,		10
121	A Simplified Multipath Component Modeling Approach for High-Speed Train Channel Based on Ray Tracing. Wireless Communications and Mobile Computing, 2017, 2017, 1-14.	1.2	10
122	Joint Resource Allocation and Trajectory Design for UAV-Aided Wireless Physical Layer Security. , 2018, , .		10
123	The 3D Spatial Non-Stationarity and Spherical Wavefront in Massive MIMO Channel Measurement. , 2018, , .		10
124	Worst-Case Energy Efficiency in Secure SWIPT Networks With Rate-Splitting ID and Power-Splitting EH Receivers. IEEE Transactions on Wireless Communications, 2022, 21, 1870-1885.	9.2	10
125	Multi-User Channels With Large-Scale Antenna Arrays in a Subway Environment: Characterization and Modeling. IEEE Access, 2017, 5, 23613-23625.	4.2	9
126	On the Feasibility of High Speed Railway mmWave Channels in Tunnel Scenario. Wireless Communications and Mobile Computing, 2017, 2017, 1-17.	1.2	9

#	Article	IF	CITATIONS
127	Geometrical-Based Statistical Modeling for Polarized MIMO Mobile-to-Mobile Channels. IEEE Transactions on Antennas and Propagation, 2018, 66, 4213-4227.	5.1	9
128	On Modeling of Dense Multipath Component for Indoor Massive MIMO Channels. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 526-530.	4.0	9
129	Age-Based Utility Maximization for Wireless Powered Networks: A Stackelberg Game Approach. , 2019, , .		9
130	Angle-of-Arrival Estimation for Vehicle-to-vehicle Communications based on Machine Learning. , 2020, , .		9
131	Cluster-Based Characterization and Modeling for UAV Air-to-Ground Time-Varying Channels. IEEE Transactions on Vehicular Technology, 2022, 71, 6872-6883.	6.3	9
132	A New Stable Clustering Scheme for Highly Mobile Ad Hoc Networks. , 2010, , .		8
133	Spatial consistency of dominant components between ray-tracing and stochastic modeling in 3GPP high-speed train scenarios. , 2017, , .		8
134	Non-stationary mobile-to-mobile channel modeling using the Gauss-Markov mobility model. , 2017, , .		8
135	A 3D Air-to-Air Wideband Non-Stationary Channel Model of UAV Communications. , 2019, , .		8
136	Channel Sounding and Ray Tracing for THz Channel Characterization. , 2020, , .		8
137	Analysis and Optimization of Resource Control in High-Speed Railway Wireless Networks. Mathematical Problems in Engineering, 2014, 2014, 1-13.	1.1	7
138	Measurement-Based Analysis of Relaying Performance for Vehicle-to-Vehicle Communications with Large Vehicle Obstructions. , 2016, , .		7
139	Mode Selection and Resource Allocation in Device-to-Device Communications With User Arrivals and Departures. IEEE Access, 2016, 4, 5209-5222.	4.2	7
140	Indoor wideband channel measurements and analysis at 11 and 14 GHz. IET Microwaves, Antennas and Propagation, 2017, 11, 1393-1400.	1.4	7
141	A cluster based geometrical model for millimeter wave mobile-to-mobile channels. , 2017, , .		7
142	Outage and Throughput of WPCN-SWIPT Networks with Nonlinear EH Model in Nakagami-m Fading. Electronics (Switzerland), 2019, 8, 138.	3.1	7
143	Channel Characterization for Satellite Link and Terrestrial Link of Vehicular Communication in the mmWave Band. IEEE Access, 2019, 7, 173559-173570.	4.2	7
144	Sub-Channel Allocation for Full-Duplex Access and Device-to-Device Links Underlaying Heterogeneous Cellular Networks Using Coalition Formation Games. IEEE Transactions on Vehicular Technology, 2020, 69, 9736-9749.	6.3	7

4

#	Article	IF	CITATIONS
145	5G Channel Models for Railway Use Cases at mmWave Band and the Path Towards Terahertz. IEEE Intelligent Transportation Systems Magazine, 2021, 13, 146-155.	3.8	7
146	Vehicle Localization Based on Hypothesis Test in NLOS Scenarios. IEEE Transactions on Vehicular Technology, 2022, 71, 2198-2203.	6.3	7
147	Measurements and analysis of the directional antenna bottom area in high speed rail. , 2012, , .		6
148	Performance Analysis of Connectivity for Vehicular Ad Hoc Networks with Moving Obstructions. , 2014, , .		6
149	Delay-Aware Online Service Scheduling in High-Speed Railway Communication Systems. Mathematical Problems in Engineering, 2014, 2014, 1-10.	1.1	6
150	Shadow fading cross-correlation of multi-frequencies in curved subway tunnels. , 2014, , .		6
151	A Sparsity-Based Clustering Framework for Radio Channel Impulse Responses. , 2016, , .		6
152	Bus-based content offloading for vehicular networks. Journal of Communications and Networks, 2017, 19, 250-258.	2.6	6
153	Characterization of indoor massive MIMO channel at 11 GHz. , 2017, , .		5
154	Blind Identification of LDPC Codes in Multipath Fading Channel via Expectation Maximization. , 2018, , .		5
155	Identification of Vehicle Obstruction Scenario Based on Machine Learning in Vehicle-to-vehicle Communications. , 2020, , .		5
156	Impact of UAV Rotation on MIMO Channel Space-Time Correlation. , 2020, , .		5
157	Vehicle-to-Vehicle Channel Characteristics in Intersection Environment. , 2022, , .		5
158	Transmission schemes for high-speed railway: Direct or relay?. , 2012, , .		4
159	Performance analysis of device-to-device communications with frequency reuse using Stochastic Petri Nets. , 2013, , .		4
160	Link connectivity under more realistic channel model for vehicle-to-vehicle communications. International Journal of Ad Hoc and Ubiquitous Computing, 2016, 22, 35.	0.5	4
161	Significance Analysis for Typical Objects in mmWave Urban Railway Propagation Environment. , 2017, , .		4

Realistic Channel Characterization for 5G Millimeter-Wave Railway Communications. , 2018, , .

#	Article	IF	CITATIONS
163	SWIPT-Enabled NOMA Networks with Full-Duplex Relaying. , 2018, , .		4
164	A Novel Denoising Method Based on Machine Learning in Channel Measurements. IEEE Transactions on Vehicular Technology, 2022, 71, 994-999.	6.3	4
165	Location Updating Schemes for High-Speed Railway Cellular Communication Systems. Mathematical Problems in Engineering, 2012, 2012, 1-15.	1.1	3
166	Outage Analysis of Train-to-Train Communication Model over Nakagami- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>m</mml:mi></mml:mrow>Channel in High-Speed Railway. International Journal of Antennas and Propagation, 2013, 2013, 1-10.</mml:math 	1.2	3
167	Bus-based content downloading for Vehicular Ad Hoc Networks. , 2015, , .		3
168	A Novel Target Recognition Based Radio Channel Clustering Algorithm. , 2018, , .		3
169	Using Coalition Games for QoS Aware Scheduling in mmWave WPANs. , 2018, , .		3
170	Channel characterisation in rural railway environment at 28 GHz. IET Microwaves, Antennas and Propagation, 2019, 13, 1052-1059.	1.4	3
171	Optimal Design of Wireless-Powered Hierarchical Fog-Cloud Computing Networks. , 2019, , .		3
172	Directional Analysis of Vehicle-to-Vehicle Channels with Large Vehicle Obstructions. , 2019, , .		3
173	Energy Minimization for Fog Computing-Enabled Hierarchical Networks with Dynamic TDD. , 2019, , .		3
174	Channel Characterization for Vehicle-to-Infrastructure Communications at the Terahertz Band. , 2020, , .		3
175	Achievable Computation Rate in NOMA-Based Wireless-Powered Networks Assisted by Multiple Fog Servers. IEEE Internet of Things Journal, 2021, 8, 4802-4815.	8.7	3
176	Terahertz Channel Measurement and Characterization on a Desktop from 75 to 400 GHz. , 2021, , .		3
177	Flow-Level Performance of Device-to-Device Overlaid OFDM Cellular Networks. Lecture Notes in Computer Science, 2015, , 305-314.	1.3	3
178	Dynamic Clustering of Multipath Components for Time-Varying Propagation Channels. IEEE Transactions on Vehicular Technology, 2021, 70, 13396-13400.	6.3	3
179	Energy-Aware Dynamic Computation Offloading in High-Speed Railway Networks with D-TDD. , 2020, , .		3
180	Multipath Fading Channel Modeling with Aerial Intelligent Reflecting Surface. , 2021, , .		3

#	Article	IF	CITATIONS
181	Large scale fading characteristics in rail traffic scenarios. , 2015, , .		2
182	Secrecy Energy Efficiency in SWIPT Networks with Two-Layer Power-Splitting Receiver. , 2018, , .		2
183	Wireless Coverage Analysis for Intra-Wagon Scenario at 60 GHz Band. , 2018, , .		2
184	Directional Analysis of Massive MIMO Channels at $11~{ m GHz}$ in Theater Environment. , 2018, , .		2
185	Channel Characteristics in Rural Railway Environment at 28 GHz. , 2018, , .		2
186	Propagation Modeling for Air-Ground Channel over Rough Sea Surface in Low Altitudes. , 2019, , .		2
187	Robust Energy-Efficient Beamforming in MISO Networks with Dynamic Energy Consumption Model. , 2019, , .		2
188	A heuristic cross-correlation model of shadow fading in high-speed railway environments. , 2014, , .		1
189	Statistical Characterization of Dynamic Multi-Path Components for Vehicle-to-Vehicle Radio Channels. , 2015, , .		1
190	Measurement and Analysis of Channel Characteristics in Reflective Environments at 3.6 GHz and 14.6 GHz. Applied Sciences (Switzerland), 2017, 7, 165.	2.5	1
191	Measurement-Based Massive MIMO Channel Characterization in Lobby Environment at 11 GHz., 2018, , .		1
192	Analysis of Edge Detection for the Clusters in Radio Propagation Channel. , 2018, , .		1
193	Measurement-based Massive MIMO Channel Characterization in Subway Station. , 2018, , .		1
194	Clustering Performance Evaluation Algorithm for Vehicle-to-Vehicle Radio Channels. , 2020, , .		1
195	A General Two-Link Correlation Model of Shadow Fading in Wireless Sensor Network. , 2014, , .		0
196	The application of semi-deterministic method on high-speed railway cutting scenario. , 2014, , .		0
197	Measurement uncertainty introduced by instruments in frequency domain channel measurement systems with a covariance-based analysis. , 2015, , .		0
198	Stochastic Modeling for Extra Propagation Loss of Tunnel Curve. , 2016, , .		0

Stochastic Modeling for Extra Propagation Loss of Tunnel Curve. , 2016, , . 198

#	Article	IF	CITATIONS
199	3D LTE Coverage Prediction for Residential District by Ray Tracing Simulation. , 2018, , .		Ο
200	Ray-tracing Simulations and Millimeter Wave Massive MIMO Performance Evaluation for Rail Traffic Scenarios. , 2018, , .		0
201	Data driven interference source localization based on train real-time onboard interference monitoring. Computer Communications, 2021, 176, 56-65.	5.1	0
202	Stochastic Channel Models. Springer Series in Optical Sciences, 2022, , 147-152.	0.7	0
203	Frequency Planning Strategies of Reducing Inter-Cell Interference for MmWave V2I Communication in Urban Scenario. , 2021, , .		Ο