List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1214127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polymer Testing, 2013, 32, 918-926.	4.8	375
2	Chitin Whiskers: An Overview. Biomacromolecules, 2012, 13, 1-11.	5.4	374
3	Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers, 2018, 10, 623.	4.5	311
4	Biodegradable Soy Protein Isolate-Based Materials: A Review. Biomacromolecules, 2011, 12, 3369-3380.	5.4	287
5	An Efficient Mono-Component Polymeric Intumescent Flame Retardant for Polypropylene: Preparation and Application. ACS Applied Materials & amp; Interfaces, 2014, 6, 7363-7370.	8.0	268
6	Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. Journal of Materials Chemistry C, 2019, 7, 441-448.	5.5	238
7	Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresource Technology, 2009, 100, 2569-2574.	9.6	237
8	New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chemical Engineering Journal, 2018, 336, 622-632.	12.7	228
9	Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polymer Degradation and Stability, 2010, 95, 763-770.	5.8	227
10	Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polymer Degradation and Stability, 2008, 93, 1323-1331.	5.8	221
11	Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. Journal of Materials Chemistry A, 2014, 2, 13955.	10.3	220
12	Novel Multifunctional Organic–Inorganic Hybrid Curing Agent with High Flame-Retardant Efficiency for Epoxy Resin. ACS Applied Materials & Interfaces, 2015, 7, 17919-17928.	8.0	213
13	A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing. Chemical Engineering Journal, 2018, 337, 30-39.	12.7	212
14	Advanced Flameâ€Retardant Methods for Polymeric Materials. Advanced Materials, 2022, 34, e2107905.	21.0	209
15	POLY(p-DIOXANONE) AND ITS COPOLYMERS. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2002, 42, 373-398.	2.2	194
16	Halogen-Free Flame-Retardant Flexible Polyurethane Foam with a Novel Nitrogen–Phosphorus Flame Retardant. Industrial & Engineering Chemistry Research, 2012, 51, 9769-9776.	3.7	186
17	Preparation and burning behaviors of flame retarding biodegradable poly(lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polymer Degradation and Stability, 2010, 95, 2474-2480.	5.8	181
18	Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property. Chemical Engineering Journal, 2018, 347, 223-232.	12.7	181

#	Article	IF	CITATIONS
19	Fully Biobased and Supertough Polylactide-Based Thermoplastic Vulcanizates Fabricated by Peroxide-Induced Dynamic Vulcanization and Interfacial Compatibilization. Biomacromolecules, 2014, 15, 4260-4271.	5.4	178
20	Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chemical Engineering Journal, 2018, 354, 208-219.	12.7	178
21	Preparation and properties of oxidized starch with high degree of oxidation. Carbohydrate Polymers, 2012, 87, 2554-2562.	10.2	170
22	A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polymer Degradation and Stability, 2008, 93, 1308-1315.	5.8	167
23	A novel biodegradable multiblock poly(ester urethane) containing poly(l-lactic acid) and poly(butylene succinate) blocks. Polymer, 2009, 50, 1178-1186.	3.8	166
24	Properties of Starch Blends with Biodegradable Polymers. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2003, 43, 385-409.	2.2	165
25	Strong and tough fully physically crosslinked double network hydrogels with tunable mechanics and high self-healing performance. Chemical Engineering Journal, 2018, 349, 588-594.	12.7	163
26	Flame retardation of polypropylene via a novel intumescent flame retardant: Ethylenediamine-modified ammonium polyphosphate. Polymer Degradation and Stability, 2014, 106, 88-96.	5.8	160
27	Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates. Polymer Degradation and Stability, 2007, 92, 1592-1598.	5.8	157
28	Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polymer Degradation and Stability, 2009, 94, 625-631.	5.8	154
29	A Novel Intumescent Flame-Retardant Polyethylene System. Macromolecular Materials and Engineering, 2006, 291, 247-253.	3.6	153
30	Synthesis of Organo Cobaltâ´'Aluminum Layered Double Hydroxide via a Novel Single-Step Self-Assembling Method and Its Use as Flame Retardant Nanofiller in PP. Langmuir, 2010, 26, 14162-14169.	3.5	153
31	Intumescence: An effect way to flame retardance and smoke suppression for polystryene. Polymer Degradation and Stability, 2012, 97, 1423-1431.	5.8	151
32	Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics. Polymer Degradation and Stability, 2005, 88, 349-356.	5.8	147
33	Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chemical Engineering Journal, 2018, 343, 198-206.	12.7	143
34	Flame-Retardant Effect of Sepiolite on an Intumescent Flame-Retardant Polypropylene System. Industrial & Engineering Chemistry Research, 2011, 50, 2047-2054.	3.7	142
35	Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics. Chemical Engineering Journal, 2021, 410, 128361.	12.7	142
36	Biodegradable Pectin/Clay Aerogels. ACS Applied Materials & amp; Interfaces, 2013, 5, 1715-1721.	8.0	141

#	Article	IF	CITATIONS
37	Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions. Polymer Testing, 2011, 30, 372-380.	4.8	140
38	Ultralight Three-Dimensional Hierarchical Cobalt Nanocrystals/N-Doped CNTs/Carbon Sponge Composites with a Hollow Skeleton toward Superior Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 35987-35998.	8.0	140
39	Synergistic Effect of the Charring Agent on the Thermal and Flame Retardant Properties of Polyethylene. Macromolecular Materials and Engineering, 2004, 289, 208-212.	3.6	139
40	Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. Journal of Hazardous Materials, 2018, 360, 651-660.	12.4	139
41	A novel bio-based flame retardant for polypropylene from phytic acid. Polymer Degradation and Stability, 2019, 161, 298-308.	5.8	138
42	Biomimetic Optical Cellulose Nanocrystal Films with Controllable Iridescent Color and Environmental Stimuli-Responsive Chromism. ACS Applied Materials & Interfaces, 2018, 10, 5805-5811.	8.0	135
43	Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. ACS Applied Materials & Interfaces, 2016, 8, 643-650.	8.0	134
44	Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2. Acta Materialia, 2009, 57, 3182-3191.	7.9	130
45	Dissolution Behavior of Chitin in Ionic Liquids. Journal of Macromolecular Science - Physics, 2010, 49, 528-541.	1.0	129
46	A promising strategy for chemical recycling of carbon fiber/thermoset composites: self-accelerating decomposition in a mild oxidative system. Green Chemistry, 2012, 14, 3260.	9.0	129
47	In situ formed crosslinked polyurethane toughened polylactide. Polymer Chemistry, 2014, 5, 2530.	3.9	129
48	Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydrate Polymers, 2011, 83, 762-768.	10.2	127
49	Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property. Polymer Chemistry, 2016, 7, 3003-3012.	3.9	126
50	Preparation and Flammability of Poly(vinyl alcohol) Composite Aerogels. ACS Applied Materials & Interfaces, 2014, 6, 6790-6796.	8.0	125
51	A flame-retardant-free and thermo-cross-linkable copolyester: Flame-retardant and anti-dripping mode of action. Polymer, 2014, 55, 2394-2403.	3.8	124
52	A review on flame retardant technology in China. Part I: development of flame retardants. Polymers for Advanced Technologies, 2010, 21, 1-26.	3.2	123
53	A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer, 2011, 52, 233-238.	3.8	123
54	Inherently Flame-Retardant Flexible Polyurethane Foam with Low Content of Phosphorus-Containing Cross-Linking Agent. Industrial & Engineering Chemistry Research, 2014, 53, 1160-1171.	3.7	123

#	Article	IF	CITATIONS
55	High Carbonyl Content Oxidized Starch Prepared by Hydrogen Peroxide and Its Thermoplastic Application. Starch/Staerke, 2009, 61, 646-655.	2.1	120
56	Low flammability, foam-like materials based on ammonium alginate and sodium montmorillonite clay. Polymer, 2012, 53, 5825-5831.	3.8	119
57	Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polymer Degradation and Stability, 2012, 97, 721-728.	5.8	119
58	A novel charring agent containing caged bicyclic phosphate and its application in intumescent flame retardant polypropylene systems. Journal of Industrial and Engineering Chemistry, 2008, 14, 589-595.	5.8	117
59	A method for simultaneously improving the flame retardancy and toughness of PLA. Polymers for Advanced Technologies, 2011, 22, 2295-2301.	3.2	117
60	Highly efficient, transparent, and environment-friendly flame-retardant coating for cotton fabric. Chemical Engineering Journal, 2021, 424, 130556.	12.7	117
61	Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: Thermal stability, flame retardance and pyrolysis behavior. Journal of Analytical and Applied Pyrolysis, 2017, 128, 54-63.	5.5	116
62	Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing Schiff base and spirocyclic structures. Chemical Engineering Journal, 2018, 344, 419-430.	12.7	113
63	Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer, 2018, 153, 616-625.	3.8	113
64	A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin. Chemical Engineering Journal, 2020, 380, 122471.	12.7	110
65	A Novel Phosphorus-Containing Polymer as a Highly Effective Flame Retardant. Macromolecular Materials and Engineering, 2004, 289, 703-707.	3.6	109
66	Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments. Polymer Testing, 2013, 32, 60-70.	4.8	109
67	Design of Poly(<scp>l</scp> -lactide)–Poly(ethylene glycol) Copolymer with Light-Induced Shape-Memory Effect Triggered by Pendant Anthracene Groups. ACS Applied Materials & Interfaces, 2016, 8, 9431-9439.	8.0	109
68	A Fascinating Metallo-Supramolecular Polymer Network with Thermal/Magnetic/Light-Responsive Shape-Memory Effects Anchored by Fe ₃ O ₄ Nanoparticles. Macromolecules, 2018, 51, 705-715.	4.8	109
69	Flame-Retardant multifunctional epoxy resin with high performances. Chemical Engineering Journal, 2022, 427, 132031.	12.7	106
70	Aluminum Hypophosphite versus Alkyl-Substituted Phosphinate in Polyamide 6: Flame Retardance, Thermal Degradation, and Pyrolysis Behavior. Industrial & Engineering Chemistry Research, 2013, 52, 2875-2886.	3.7	104
71	Green Approach to Improving the Strength and Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Biobased Gelatin. ACS Applied Materials & Interfaces, 2017, 9, 42258-42265.	8.0	104
72	Polyamideâ€enhanced flame retardancy of ammonium polyphosphate on epoxy resin. Journal of Applied Polymer Science, 2008, 108, 2644-2653.	2.6	103

#	Article	IF	CITATIONS
73	Hierarchically porous SiO2/polyurethane foam composites towards excellent thermal insulating, flame-retardant and smoke-suppressant performances. Journal of Hazardous Materials, 2019, 375, 61-69.	12.4	103
74	Design and Synthesis of PETâ€Based Copolyesters with Flameâ€Retardant and Antidripping Performance. Macromolecular Rapid Communications, 2017, 38, 1700451.	3.9	102
75	Synthesis and characterization of a novel nitrogen-containing flame retardant. Journal of Applied Polymer Science, 2004, 94, 1556-1561.	2.6	101
76	Flame retardant mechanism of an efficient flame-retardant polymeric synergist with ammonium polyphosphate for polypropylene. Polymer Degradation and Stability, 2013, 98, 2011-2020.	5.8	100
77	Banana Leaflike C-Doped MoS ₂ Aerogels toward Excellent Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2020, 12, 26301-26312.	8.0	100
78	Preparation and characterisation of a novel fire retardant PET/α-zirconium phosphate nanocomposite. Polymer Degradation and Stability, 2009, 94, 544-549.	5.8	99
79	Hierarchical Ti3C2Tx@ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins. Nano-Micro Letters, 2022, 14, 76.	27.0	99
80	Char-forming mechanism of a novel polymeric flame retardant with char agent. Polymer Degradation and Stability, 2007, 92, 1046-1052.	5.8	98
81	Efficient Approach to Improving the Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Piperazine-Modified Ammonium Polyphosphate. ACS Applied Materials & Interfaces, 2015, 7, 1780-1786.	8.0	98
82	Thermal oxidative degradation behaviours of flame-retardant copolyesters containing phosphorous linked pendent group/montmorillonite nanocomposites. Polymer Degradation and Stability, 2005, 87, 171-176.	5.8	96
83	Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid). Polymer Degradation and Stability, 2011, 96, 1557-1561.	5.8	96
84	An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system. Polymer Degradation and Stability, 2011, 96, 363-370.	5.8	95
85	Photothermal Conversion Triggered Precisely Targeted Healing of Epoxy Resin Based on Thermoreversible Diels–Alder Network and Amino-Functionalized Carbon Nanotubes. ACS Applied Materials & Interfaces, 2017, 9, 20797-20807.	8.0	95
86	A novel Schiff-base polyphosphate ester: Highly-efficient flame retardant for polyurethane elastomer. Polymer Degradation and Stability, 2017, 144, 70-82.	5.8	94
87	Multifunctional Flame-Retardant Melamine-Based Hybrid Foam for Infrared Stealth, Thermal Insulation, and Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2021, 13, 26505-26514.	8.0	94
88	A novel efficient halogen-free flame retardant system for polycarbonate. Polymer Degradation and Stability, 2011, 96, 320-327.	5.8	93
89	Surface modification with hierarchical CuO arrays toward a flexible, durable superhydrophobic and self-cleaning material. Chemical Engineering Journal, 2017, 313, 1328-1334.	12.7	93
90	Modified Corn Starches with Improved Comprehensive Properties for Preparing Thermoplastics. Starch/Staerke, 2007, 59, 258-268.	2.1	92

#	Article	IF	CITATIONS
91	Photo-cross-linking: A powerful and versatile strategy to develop shape-memory polymers. Progress in Polymer Science, 2019, 95, 32-64.	24.7	91
92	From trash to treasure: Chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials. Journal of Energy Chemistry, 2022, 69, 369-388.	12.9	91
93	Biodegradation behavior of PHBV films in a pilot-scale composting condition. Polymer Testing, 2010, 29, 579-587.	4.8	90
94	An Effective Way To Flame-Retard Biocomposite with Ethanolamine Modified Ammonium Polyphosphate and Its Flame Retardant Mechanisms. Industrial & Engineering Chemistry Research, 2015, 54, 3524-3531.	3.7	90
95	Structure and Properties of Soy Protein/Poly(butylene succinate) Blends with Improved Compatibility. Biomacromolecules, 2008, 9, 3157-3164.	5.4	89
96	A new approach for the simultaneous improvement of fire retardancy, tensile strength and melt dripping of poly(ethylene terephthalate). Journal of Materials Chemistry, 2003, 13, 1248.	6.7	88
97	Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: Thermal stability, flame retardance and smoke suppression. Polymer Degradation and Stability, 2016, 131, 62-70.	5.8	88
98	Biomass-derived Co@crystalline carbon@carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. Journal of Alloys and Compounds, 2018, 736, 71-79.	5.5	88
99	Layer-by-layer assembled flame-retardant architecture toward high-performance carbon fiber composite. Chemical Engineering Journal, 2018, 353, 550-558.	12.7	88
100	Effect of metal chelates on the ignition and early flaming behaviour of intumescent fire-retarded polyethylene systems. Polymer Degradation and Stability, 2008, 93, 1024-1030.	5.8	87
101	An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polymer Degradation and Stability, 2014, 108, 97-107.	5.8	87
102	Highly Flame Retardant Expanded Polystyrene Foams from Phosphorus–Nitrogen–Silicon Synergistic Adhesives. Industrial & Engineering Chemistry Research, 2017, 56, 4649-4658.	3.7	87
103	Novel phosphorus-containing imidazolium as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy. Composites Part B: Engineering, 2020, 184, 107673.	12.0	87
104	Synergy effect between quaternary phosphonium ionic liquid and ammonium polyphosphate toward flame retardant PLA with improved toughness. Composites Part B: Engineering, 2020, 197, 108192.	12.0	87
105	Epoxidized soybean oil cured with tannic acid for fully bio-based epoxy resin. RSC Advances, 2018, 8, 26948-26958.	3.6	86
106	Bioinspired Color Changing Molecular Sensor toward Early Fire Detection Based on Transformation of Phthalonitrile to Phthalocyanine. Advanced Functional Materials, 2019, 29, 1806586.	14.9	86
107	Desert Beetle-Inspired Superhydrophilic/Superhydrophobic Patterned Cellulose Film with Efficient Water Collection and Antibacterial Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 14679-14684.	6.7	85
108	Facile fabrication of poly(vinyl alcohol) gels and derivative aerogels. Polymer, 2014, 55, 380-384.	3.8	84

#	Article	IF	CITATIONS
109	Organically modified rectorite toughened poly(lactic acid): Nanostructures, crystallization and mechanical properties. European Polymer Journal, 2009, 45, 2996-3003.	5.4	83
110	The synergistic flameâ€retardant effect of Oâ€MMT on the intumescent flameâ€retardant PP/CA/APP systems. Polymers for Advanced Technologies, 2010, 21, 789-796.	3.2	83
111	Super-tough poly(<scp>l</scp> -lactide)/crosslinked polyurethane blends with tunable impact toughness. RSC Advances, 2014, 4, 12857-12866.	3.6	83
112	A robust self-healing polyurethane elastomer: From H-bonds and stacking interactions to well-defined microphase morphology. Science China Materials, 2019, 62, 1188-1198.	6.3	83
113	Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chemical Engineering Journal, 2019, 361, 1245-1254.	12.7	83
114	Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems. Polymer Degradation and Stability, 2011, 96, 771-777.	5.8	82
115	A novel phosphorus-containing flame retardant for the formaldehyde-free treatment of cotton fabrics. Polymer Degradation and Stability, 2012, 97, 2487-2491.	5.8	82
116	Kinetics of thermal degradation of flame retardant copolyesters containing phosphorus linked pendent groups. Polymer Degradation and Stability, 2003, 80, 135-140.	5.8	81
117	Constructing hierarchically hydrophilic/superhydrophobic ZIF-8 pattern on soy protein towards a biomimetic efficient water harvesting material. Chemical Engineering Journal, 2019, 369, 1040-1048.	12.7	81
118	Novel piperazine-containing oligomer as flame retardant and crystallization induction additive for thermoplastics polyurethane. Chemical Engineering Journal, 2020, 400, 125941.	12.7	81
119	Preparation and characterization of nanocomposites of polyvinyl alcohol/cellulose nanowhiskers/chitosan. Composites Science and Technology, 2015, 115, 60-65.	7.8	80
120	Adaptable Strategy to Fabricate Self-Healable and Reprocessable Poly(thiourethane-urethane) Elastomers via Reversible Thiol–Isocyanate Click Chemistry. Macromolecules, 2020, 53, 4284-4293.	4.8	80
121	High strength, low flammability, and smoke suppression for epoxy thermoset enabled by a low-loading phosphorus-nitrogen-silicon compound. Composites Part B: Engineering, 2021, 211, 108640.	12.0	80
122	Flame-retarded thermoplastic polyurethane elastomer: From organic materials to nanocomposites and new prospects. Chemical Engineering Journal, 2021, 417, 129314.	12.7	80
123	Kinetics of thermal degradation and thermal oxidative degradation of poly(p-dioxanone). European Polymer Journal, 2003, 39, 1567-1574.	5.4	79
124	Cellulose/Soy Protein Isolate Blend Films Prepared via Room-Temperature Ionic Liquid. Industrial & Engineering Chemistry Research, 2009, 48, 7132-7136.	3.7	79
125	Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for Polymers. Materials, 2010, 3, 4746-4760.	2.9	79
126	4D printing of shape memory aliphatic copolyester via UV-assisted FDM strategy for medical protective devices. Chemical Engineering Journal, 2020, 396, 125242.	12.7	79

#	Article	IF	CITATIONS
127	Fe ₃ O ₄ Nanoparticle/N-Doped Carbon Hierarchically Hollow Microspheres for Broadband and High-Performance Microwave Absorption at an Ultralow Filler Loading. ACS Applied Materials & Interfaces, 2020, 12, 18952-18963.	8.0	79
128	Unique Crystalline/Crystalline Polymer Blends of Poly(ethylene succinate) and Poly(<i>p</i> -dioxanone): Miscibility and Crystallization Behaviors. Journal of Physical Chemistry B, 2010, 114, 14827-14833.	2.6	78
129	A novel flame-retardant-free copolyester: cross-linking towards self extinguishing and non-dripping. Journal of Materials Chemistry, 2012, 22, 19849.	6.7	78
130	Super Toughened and High Heat-Resistant Poly(Lactic Acid) (PLA)-Based Blends by Enhancing Interfacial Bonding and PLA Phase Crystallization. Industrial & Engineering Chemistry Research, 2015, 54, 5643-5655.	3.7	78
131	Nickel-Schiff base decorated graphene for simultaneously enhancing the electroconductivity, fire resistance, and mechanical properties of a polyurethane elastomer. Journal of Materials Chemistry A, 2018, 6, 8643-8654.	10.3	78
132	Strong and Tough Polylactic Acid Based Composites Enabled by Simultaneous Reinforcement and Interfacial Compatibilization of Microfibrillated Cellulose. ACS Sustainable Chemistry and Engineering, 2020, 8, 1573-1582.	6.7	78
133	Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polyphosphate. Polymer Degradation and Stability, 2019, 165, 126-136.	5.8	76
134	A novel halogen-free flame retardant for glass-fiber-reinforced poly(ethylene terephthalate). Polymer Degradation and Stability, 2008, 93, 1188-1193.	5.8	75
135	Highly efficient solvolysis of epoxy resin using poly(ethylene glycol)/NaOH systems. Polymer Degradation and Stability, 2012, 97, 1101-1106.	5.8	75
136	Flame-Retardant Flexible Polyurethane Foams with Highly Efficient Melamine Salt. Industrial & Engineering Chemistry Research, 2017, 56, 7112-7119.	3.7	75
137	A fast and mild closed-loop recycling of anhydride-cured epoxy through microwave-assisted catalytic degradation by trifunctional amine and subsequent reuse without separation. Green Chemistry, 2019, 21, 2487-2493.	9.0	75
138	Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. Journal of Hazardous Materials, 2021, 403, 123977.	12.4	75
139	Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Composites Part B: Engineering, 2021, 225, 109309.	12.0	75
140	Phosphorus-containing copolyesters: The effect of ionic group and itsÂanalogous phosphorus heterocycles on their flame-retardant and anti-dripping performances. Polymer, 2015, 60, 50-61.	3.8	74
141	Flame retardance and thermal degradation mechanism of polystyrene modified with aluminum hypophosphite. Polymer Degradation and Stability, 2014, 99, 35-42.	5.8	73
142	Ultrasoft gelatin aerogels for oil contaminant removal. Journal of Materials Chemistry A, 2016, 4, 9381-9389.	10.3	73
143	Novel Polymer Aerogel toward High Dimensional Stability, Mechanical Property, and Fire Safety. ACS Applied Materials & amp; Interfaces, 2017, 9, 22985-22993.	8.0	72
144	Fireâ€Safe Polyesters Enabled by Endâ€Group Capturing Chemistry. Angewandte Chemie - International Edition, 2019, 58, 9188-9193.	13.8	72

#	Article	IF	CITATIONS
145	Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Applied Surface Science, 2009, 255, 6795-6801.	6.1	71
146	A Novel Phosphorus-Containing Poly(ethylene terephthalate) Nanocomposite with Both Flame Retardancy and Anti-Dripping Effects. Macromolecular Materials and Engineering, 2006, 291, 638-645.	3.6	70
147	A facile and efficient flame-retardant and smoke-suppressant resin coating for expanded polystyrene foams. Composites Part B: Engineering, 2020, 185, 107797.	12.0	70
148	A phosphorusâ€containing inorganic compound as an effective flame retardant for glassâ€fiberâ€reinforced polyamide 6. Journal of Applied Polymer Science, 2011, 119, 2379-2385.	2.6	69
149	Flame-Retardant Pressure-Sensitive Adhesives Derived from Epoxidized Soybean Oil and Phosphorus-Containing Dicarboxylic Acids. ACS Sustainable Chemistry and Engineering, 2017, 5, 3353-3361.	6.7	69
150	Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite. Polymer Degradation and Stability, 2018, 154, 1-9.	5.8	69
151	3D printable robust shape memory PET copolyesters with fire safety <i>via</i> π-stacking and synergistic crosslinking. Journal of Materials Chemistry A, 2019, 7, 17037-17045.	10.3	69
152	Kinetics of thermal oxidative degradation of phosphorus-containing flame retardant copolyesters. Polymer Degradation and Stability, 2002, 76, 401-409.	5.8	68
153	Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams. Polymer Degradation and Stability, 2017, 136, 103-111.	5.8	68
154	Chameleon-Inspired Variable Coloration Enabled by a Highly Flexible Photonic Cellulose Film. ACS Applied Materials & Interfaces, 2020, 12, 46710-46718.	8.0	68
155	Double-cross-linked aerogels towards ultrahigh mechanical properties and thermal insulation at extreme environment. Chemical Engineering Journal, 2020, 399, 125698.	12.7	68
156	A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 12373-12381.	8.0	68
157	A green, durable and effective flame-retardant coating for expandable polystyrene foams. Chemical Engineering Journal, 2022, 440, 135807.	12.7	68
158	Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions. Polymer Testing, 2008, 27, 924-930.	4.8	67
159	Synergistic Effect of Layered Nanofillers in Intumescent Flame-Retardant EPDM: Montmorillonite versus Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 2013, 52, 8454-8463.	3.7	67
160	An Effective Flame Retardant and Smoke Suppression Oligomer for Epoxy Resin. Industrial & Engineering Chemistry Research, 2013, 52, 9397-9404.	3.7	67
161	Multi-stimuli sensitive supramolecular hydrogel formed by host–guest interaction between PNIPAM-Azo and cyclodextrin dimers. RSC Advances, 2014, 4, 4955.	3.6	66
162	Preparation and flammability of a novel intumescent flame-retardant poly(ethylene-co-vinyl acetate) system. Polymer Degradation and Stability, 2008, 93, 2186-2192.	5.8	65

#	Article	IF	CITATIONS
163	Well-Defined Amphiphilic Biodegradable Comb-Like Graft Copolymers: Their Unique Architecture-Determined LCST and UCST Thermoresponsivity. Macromolecules, 2011, 44, 999-1008.	4.8	65
164	Development of soy protein isolate/waterborne polyurethane blend films with improved properties. Colloids and Surfaces B: Biointerfaces, 2012, 100, 16-21.	5.0	65
165	Thermoplastic PVA/PLA Blends with Improved Processability and Hydrophobicity. Industrial & Engineering Chemistry Research, 2014, 53, 17355-17361.	3.7	65
166	Bi-DOPO Structure Flame Retardants with or without Reactive Group: Their Effects on Thermal Stability and Flammability of Unsaturated Polyester. Industrial & Engineering Chemistry Research, 2017, 56, 5913-5924.	3.7	65
167	Development of Copper Phosphate Nanoflowers on Soy Protein toward a Superhydrophobic and Self-Cleaning Film. ACS Sustainable Chemistry and Engineering, 2017, 5, 869-875.	6.7	65
168	Preparation and properties of a novel biodegradable ethyl cellulose grafting copolymer with poly(p-dioxanone) side-chains. Carbohydrate Polymers, 2010, 80, 350-359.	10.2	64
169	Roles of Soft Segment Length in Structure and Property of Soy Protein Isolate/Waterborne Polyurethane Blend Films. Industrial & Engineering Chemistry Research, 2016, 55, 1229-1235.	3.7	64
170	A novel intumescent flame-retardant system containing metal chelates for polyvinyl alcohol. Polymer Degradation and Stability, 2007, 92, 1555-1564.	5.8	63
171	Phenylmaleimide-containing PET-based copolyester: cross-linking from 2ï€ + ï€ cycloaddition toward flame retardance and anti-dripping. Polymer Chemistry, 2016, 7, 2698-2708.	3.9	63
172	Semi-aromatic copolyesters with high strength and fire safety via hydrogen bonds and π-π stacking. Chemical Engineering Journal, 2019, 374, 694-705.	12.7	63
173	A Quadruple-Biomimetic surface for spontaneous and efficient fog harvesting. Chemical Engineering Journal, 2021, 422, 130119.	12.7	63
174	Poly (N-isopropylacrylamide)/poly (ethylene oxide) blend nanofibrous scaffolds: Thermo-responsive carrier for controlled drug release. Colloids and Surfaces B: Biointerfaces, 2011, 88, 749-754.	5.0	62
175	Tough and flame-retardant poly(lactic acid) composites prepared via reactive blending with biobased ammonium phytate and in situ formed crosslinked polyurethane. Composites Communications, 2018, 8, 52-57.	6.3	62
176	Reusable and Recyclable Superhydrophilic Electrospun Nanofibrous Membranes with In Situ Co-cross-linked Polymer–Chitin Nanowhisker Network for Robust Oil-in-Water Emulsion Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 1753-1762.	6.7	62
177	Ultrahigh-Temperature Insulating and Fire-Resistant Aerogels from Cationic Amylopectin and Clay via a Facile Route. ACS Sustainable Chemistry and Engineering, 2019, 7, 11582-11592.	6.7	62
178	A new biodegradable copolyester poly(butylene succinate-co-ethylene succinate-co-ethylene) Tj ETQq0 0 0 rgBT /	Oyerlock	10 Tf 50 142
179	Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA. RSC Advances, 2014, 4, 17812.	3.6	61

180Flame-Retardant and Smoke-Suppressed Silicone Foams with Chitosan-Based Nanocoatings. Industrial
& amp; Engineering Chemistry Research, 2016, 55, 7239-7248.3.761

#	Article	IF	CITATIONS
181	Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon, 2021, 183, 205-215.	10.3	61
182	A novel phosphorus-containing copolyester/montmorillonite nanocomposites with improved flame retardancy. European Polymer Journal, 2007, 43, 2882-2890.	5.4	60
183	A Fully Biobased Encapsulant Constructed of Soy Protein and Cellulose Nanocrystals for Flexible Electromechanical Sensing. ACS Sustainable Chemistry and Engineering, 2017, 5, 7063-7070.	6.7	60
184	Polyurethane networks based on disulfide bonds: from tunable multi-shape memory effects to simultaneous self-healing. Science China Materials, 2019, 62, 437-447.	6.3	60
185	Simultaneously Improved Flame Retardance and Ceramifiable Properties of Polymer-Based Composites via the Formed Crystalline Phase at High Temperature. ACS Applied Materials & Interfaces, 2019, 11, 7459-7471.	8.0	60
186	Porous carbon materials for microwave absorption. Materials Advances, 2020, 1, 2631-2645.	5.4	60
187	Pyrolysis of waste tire on ZSM-5 zeolite with enhanced catalytic activities. Polymer Degradation and Stability, 2006, 91, 2389-2395.	5.8	59
188	Ammonium polyphosphate-based nanocoating for melamine foam towards high flame retardancy and anti-shrinkage in fire. Polymer, 2015, 66, 86-93.	3.8	59
189	A reactive phosphorus-containing polyol incorporated into flexible polyurethane foam: Self-extinguishing behavior and mechanism. Polymer Degradation and Stability, 2018, 153, 192-200.	5.8	59
190	Full-Biobased Nanofiber Membranes toward Decontamination of Wastewater Containing Multiple Pollutants. ACS Sustainable Chemistry and Engineering, 2018, 6, 11783-11792.	6.7	59
191	Catalytic degradation and dechlorination of PVC-containing mixed plastics via Al–Mg composite oxide catalysts. Fuel, 2004, 83, 1727-1732.	6.4	58
192	Effect of PEG on the crystallization of PPDO/PEG blends. European Polymer Journal, 2005, 41, 1243-1250.	5.4	58
193	Flame retardation of glass-fibre-reinforced polyamide 6 by a novel metal salt of alkylphosphinic acid. Polymer Degradation and Stability, 2011, 96, 1538-1545.	5.8	58
194	Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: Synthesis, structure, properties and shape memory performance. Polymer Chemistry, 2012, 3, 800.	3.9	58
195	Let It Shine: A Transparent and Photoluminescent Foldable Nanocellulose/Quantum Dot Paper. ACS Applied Materials & Interfaces, 2015, 7, 10076-10079.	8.0	58
196	Porous CoNi nanoalloy@N-doped carbon nanotube composite clusters with ultra-strong microwave absorption at a low filler loading. Journal of Materials Chemistry C, 2020, 8, 13712-13722.	5.5	58
197	Epoxy/iron alginate composites with improved fire resistance, smoke suppression and mechanical properties. Journal of Materials Science, 2022, 57, 2567-2583.	3.7	58
198	Renewable Sugar-Based Diols with Different Rigid Structure: Comparable Investigation on Improving Poly(butylene succinate) Performance. ACS Sustainable Chemistry and Engineering, 2016, 4, 350-362.	6.7	57

#	Article	IF	CITATIONS
199	Novel dual superlyophobic materials in water–oil systems: under oil magneto-fluid transportation and oil–water separation. Journal of Materials Chemistry A, 2018, 6, 2935-2941.	10.3	57
200	A novel non-dripping oligomeric flame retardant for polyethylene terephthalate. European Polymer Journal, 2004, 40, 1909-1913.	5.4	56
201	From miscible to partially miscible biodegradable double crystalline poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Ov	verloçk 10 3.9	Tf 50 662 To
202	The high-temperature self-crosslinking contribution of azobenzene groups to the flame retardance and anti-dripping of copolyesters. Journal of Materials Chemistry A, 2013, 1, 9264.	10.3	56
203	Synthesis of functionalized α-zirconium phosphate modified with intumescent flame retardant and its application in poly(lactic acid). Polymer Degradation and Stability, 2013, 98, 1731-1737.	5.8	56
204	Phosphorus-containing thermotropic liquid crystalline polymers: a class of efficient polymeric flame retardants. Polymer Chemistry, 2014, 5, 3737.	3.9	56
205	On controlling aerogel microstructure by freeze casting. Composites Part B: Engineering, 2019, 173, 107036.	12.0	56
206	Synthesis and Properties of Poly(Ester Urethane)s Consisting of Poly(l-Lactic Acid) and Poly(Ethylene) Tj ETQq0 0	0,ggBT /O	verlock 10 T
207	A phosphorus-containing PET ionomer: from ionic aggregates to flame retardance and restricted melt-dripping. Polymer Chemistry, 2014, 5, 1982-1991.	3.9	55
208	Robust and fire retardant borate-crosslinked poly (vinyl alcohol)/montmorillonite aerogel via melt-crosslink. Polymer, 2017, 131, 111-119.	3.8	55
209	A novel intumescent flameâ€retardant LDPE system and its thermoâ€oxidative degradation and flameâ€retardant mechanisms. Polymers for Advanced Technologies, 2008, 19, 1566-1575.	3.2	54
210	Fabrication of graphene/polylactide nanocomposites with improved properties. Composites Science and Technology, 2013, 88, 33-38.	7.8	54
211	Novel Core–Shell Hybrid Nanosphere towards the Mechanical Enhancement and Fire Retardance of Polycarbonate. ACS Applied Materials & Interfaces, 2018, 10, 28036-28050.	8.0	54
212	Carbon Fibers Decorated by Polyelectrolyte Complexes Toward Their Epoxy Resin Composites with High Fire Safety. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1375-1384.	3.8	54
213	A novel method for preparing poly(ethylene terephthalate)/BaSO4 nanocomposites. European Polymer Journal, 2005, 41, 2569-2574.	5.4	53
214	Synthesis and Properties of Biodegradable Poly(butylene succinate-co-diethylene glycol succinate) Copolymers. Industrial & Engineering Chemistry Research, 2012, 51, 12258-12265.	3.7	53
215	Direct Aqueous Self-Assembly of an Amphiphilic Diblock Copolymer toward Multistimuli-Responsive Fluorescent Anisotropic Micelles. ACS Nano, 2015, 9, 4649-4659.	14.6	53
216	From Fragility to Flexibility: Construction of Hydrogel Bridges toward a Flexible Multifunctional Freeâ€Standing CaCO ₃ Film. Advanced Functional Materials, 2018, 28, 1704956.	14.9	53

#	Article	IF	CITATIONS
217	Continuous and controlled directional water transportation on a hydrophobic/superhydrophobic patterned surface. Chemical Engineering Journal, 2018, 352, 722-729.	12.7	53
218	Novel amino glycerin decorated ammonium polyphosphate for the highly-efficient intumescent flame retardance of wood flour/polypropylene composite via simultaneous interfacial and bulk charring. Composites Part B: Engineering, 2019, 172, 636-648.	12.0	53
219	Chain folding in main-chain liquid crystalline polyesters: from ï€â€"ï€ stacking toward shape memory. Journal of Materials Chemistry C, 2014, 2, 6155.	5.5	52
220	Phosphorusâ€containing telechelic polyesterâ€based ionomer: Facile synthesis and antidripping effects. Journal of Polymer Science Part A, 2008, 46, 2994-3006.	2.3	51
221	Influence of oxidized starch on the properties of thermoplastic starch. Carbohydrate Polymers, 2013, 96, 358-364.	10.2	51
222	A Facile Strategy To Construct PDLLA-PTMEG Network with Triple-Shape Effect via Photo-Cross-Linking of Anthracene Groups. Macromolecules, 2016, 49, 3845-3855.	4.8	51
223	Poly(piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system. RSC Advances, 2016, 6, 30436-30444.	3.6	51
224	A novel organic-inorganic hybrid SiO2@DPP for the fire retardance of polycarbonate. Polymer Degradation and Stability, 2018, 154, 177-185.	5.8	51
225	Biomimetic construction peanut-leaf structure on ammonium polyphosphate surface: Improving its compatibility with poly(lactic acid) and flame-retardant efficiency simultaneously. Chemical Engineering Journal, 2021, 412, 128737.	12.7	51
226	Temperature-Responsive Intumescent Chemistry toward Fire Resistance and Super Thermal Insulation under Extremely Harsh Conditions. Chemistry of Materials, 2021, 33, 6018-6028.	6.7	51
227	Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 126, 266-274.	10.7	51
228	Thermal behaviors of flame-retardant polycarbonates containing diphenyl sulfonate and poly(sulfonyl phenylene phosphonate). Journal of Applied Polymer Science, 2003, 89, 882-889.	2.6	50
229	Fully Bio-Based Phytic Acid–Basic Amino Acid Salt for Flame-Retardant Polypropylene. ACS Applied Polymer Materials, 2021, 3, 1488-1498.	4.4	50
230	Influence of Valence and Structure of Phosphorus-Containing Melamine Salts on the Decomposition and Fire Behaviors of Flexible Polyurethane Foams. Industrial & Engineering Chemistry Research, 2014, 53, 8773-8783.	3.7	49
231	Highly-efficient separation of oil and water enabled by a silica nanoparticle coating with pH-triggered tunable surface wettability. Journal of Colloid and Interface Science, 2019, 557, 65-75.	9.4	49
232	An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions. Journal of Materials Chemistry A, 2020, 8, 18698-18706.	10.3	49
233	Modifications of ZSM-5 zeolites and their applications in catalytic degradation of LDPE. Polymer Degradation and Stability, 2003, 80, 23-30.	5.8	48
234	Burning behavior and pyrolysis products of flame-retardant PET containing sulfur-containing aryl polyphosphonate. Journal of Analytical and Applied Pyrolysis, 2006, 76, 198-202.	5.5	48

#	Article	IF	CITATIONS
235	Synthesis and Properties of Thermoplastic Poly(vinyl Alcohol)- <i>Graft</i> -Lactic Acid Copolymers. Industrial & Engineering Chemistry Research, 2009, 48, 788-793.	3.7	48
236	Synergistic Effect between Aluminum Hypophosphite and Alkyl-Substituted Phosphinate in Flame-Retarded Polyamide 6. Industrial & Engineering Chemistry Research, 2013, 52, 17162-17170.	3.7	48
237	Rejuvenated fly ash in poly(vinyl alcohol)-based composite aerogels with high fire safety and smoke suppression. Chemical Engineering Journal, 2017, 327, 992-999.	12.7	48
238	Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification. Chemosphere, 2022, 294, 133778.	8.2	48
239	Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polymer Degradation and Stability, 2011, 96, 1669-1675.	5.8	47
240	A novel high-temperature-resistant polymeric material for cables and insulated wires via the ceramization of mica-based ceramifiable EVA composites. Composites Science and Technology, 2016, 132, 116-122.	7.8	47
241	Cellulose Nanocrystal-Templated Synthesis of Mesoporous TiO ₂ with Dominantly Exposed (001) Facets for Efficient Catalysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 3721-3725.	6.7	47
242	One-step preparation of poly(ionic liquid)-based flexible electrolytes by in-situ polymerization for dendrite-free lithium ion batteries. Chemical Engineering Journal, 2019, 375, 122062.	12.7	47
243	Tissue anti-adhesion potential of biodegradable PELA electrospun membranes. Acta Biomaterialia, 2009, 5, 2467-2474.	8.3	46
244	Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate). Materials Chemistry and Physics, 2011, 130, 943-949.	4.0	46
245	Azobenzene-containing liquid crystalline polyester with π–π interactions: diverse thermo- and photo-responsive behaviours. Journal of Materials Chemistry C, 2017, 5, 3306-3314.	5.5	46
246	Multifunctional Photothermal Conversion Nanocoatings Toward Highly Efficient and Safe High-Viscosity Oil Cleanup Absorption. ACS Applied Materials & Interfaces, 2021, 13, 11948-11957.	8.0	46
247	Novel Inherently Flame-Retardant Poly(trimethylene Terephthalate) Copolyester with the Phosphorus-Containing Linking Pendent Group. Industrial & Engineering Chemistry Research, 2010, 49, 7052-7059.	3.7	45
248	Polymeric triglyceride analogs prepared by enzyme-catalyzed condensation polymerization. European Polymer Journal, 2013, 49, 793-803.	5.4	45
249	An efficient flame retardant for silicone rubber: Preparation and application. Polymer Degradation and Stability, 2015, 121, 42-50.	5.8	45
250	Fabrication of Liquid Crystalline Polyurethane Networks with a Pendant Azobenzene Group to Access Thermal/Photoresponsive Shape-Memory Effects. ACS Applied Materials & Interfaces, 2017, 9, 24947-24954.	8.0	45
251	Novel alkynyl-containing phosphonate ester oligomer with high charring capability as flame retardant additive for thermoplastic polyurethane. Composites Part B: Engineering, 2020, 199, 108315.	12.0	45
252	Novel polyamide 6 composites based on Schiff-base containing phosphonate oligomer: High flame retardancy, great processability and mechanical property. Composites Part A: Applied Science and Manufacturing, 2021, 146, 106423.	7.6	45

#	Article	IF	CITATIONS
253	Catalytic degradation of low-density polyethylene and polypropylene using modified ZSM-5 zeolites. Polymer Degradation and Stability, 2004, 84, 493-497.	5.8	44

Properties of phosphorus-containing thermotropic liquid crystal copolyester/poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 To

255	Preparation of a new dialdehyde starch derivative and investigation of its thermoplastic properties. Journal of Polymer Research, 2010, 17, 439-446.	2.4	44
256	An efficient halogen-free flame retardant for polyethylene: piperazinemodified ammonium polyphosphates with different structures. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1339-1353.	3.8	44
257	Reinforcement of shape-memory poly(ethylene-co-vinyl acetate) by carbon fibre to access robust recovery capability under resistant condition. Composites Science and Technology, 2018, 157, 202-208.	7.8	44
258	Recycling waste epoxy resin as hydrophobic coating of melamine foam for high-efficiency oil absorption. Applied Surface Science, 2020, 529, 147151.	6.1	44
259	A novel flame retardant of spirocyclic pentaerythritol bisphosphorate for epoxy resins. Journal of Applied Polymer Science, 2006, 102, 4978-4982.	2.6	43
260	Preparation, characterization, and in vitro drug release behavior of biodegradable chitosan-graft-poly(1, 4-dioxan-2-one) copolymer. Carbohydrate Polymers, 2008, 74, 862-867.	10.2	43
261	Effect of carbonyl content on the properties of thermoplastic oxidized starch. Carbohydrate Polymers, 2009, 78, 157-161.	10.2	43
262	Green synthesis of a novel biodegradable copolymer base on cellulose and poly(p-dioxanone) in ionic liquid. Carbohydrate Polymers, 2009, 76, 139-144.	10.2	43
263	Foam-like materials based on whey protein isolate. European Polymer Journal, 2013, 49, 3387-3391.	5.4	43
264	Inherent flame retardation of semi-aromatic polyesters via binding small-molecule free radicals and charring. Polymer Chemistry, 2016, 7, 1584-1592.	3.9	43
265	Effect of different dimensional carbon nanoparticles on the shape memory behavior of thermotropic liquid crystalline polymer. Composites Science and Technology, 2017, 138, 8-14.	7.8	43
266	From waste epoxy resins to efficient oil/water separation materials <i>via</i> a microwave assisted pore-forming strategy. Materials Horizons, 2019, 6, 1733-1739.	12.2	43
267	Epoxy resin composites reinforced and fire-retarded by surficially-treated carbon fibers via a tunable and facile process. Composites Science and Technology, 2020, 187, 107945.	7.8	43
268	Ductile-brittle-transition phenomenon in polypropylene/ethylene-propylene-diene rubber blends obtained by dynamic packing injection molding: A new understanding of the rubber-toughening mechanism. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2086-2097.	2.1	42
269	Catalytic effect of Al–Zn composite catalyst on the degradation of PVC-containing polymer mixtures into pyrolysis oil. Polymer Degradation and Stability, 2003, 81, 89-94.	5.8	42
270	Crystallization and morphology of a novel biodegradable polymer system: poly(1,4-dioxan-2-one)/starch blends. Acta Materialia, 2004, 52, 4899-4905.	7.9	42

#	Article	IF	CITATIONS
271	A novel biodegradable poly(p-dioxanone)-grafted poly(vinyl alcohol) copolymer with a controllable in vitro degradation. Polymer, 2006, 47, 32-36.	3.8	42
272	Novel Flame-Retardant and Antidripping Branched Polyesters Prepared via Phosphorus-Containing Ionic Monomer as End-Capping Agent. Industrial & Engineering Chemistry Research, 2010, 49, 4190-4196.	3.7	42
273	Morphology and interference color in spherulite of poly(trimethylene terephthalate) copolyester with bulky linking pendent group. Physical Chemistry Chemical Physics, 2011, 13, 11067.	2.8	42
274	Poly(vinyl alcohol)/Ammonium Polyphosphate Systems Improved Simultaneously Both Fire Retardancy and Mechanical Properties by Montmorillonite. Industrial & Engineering Chemistry Research, 2011, 50, 9998-10005.	3.7	42
275	Improving Flexibility of Poly(<scp>l</scp> -lactide) by Blending with Poly(<scp>l</scp> -lactic acid) Based Poly(ester-urethane): Morphology, Mechanical Properties, and Crystallization Behaviors. Industrial & Engineering Chemistry Research, 2011, 50, 6124-6131.	3.7	42
276	Urethane Ionic Groups Induced Rapid Crystallization of Biodegradable Poly(ethylene succinate). ACS Macro Letters, 2012, 1, 965-968.	4.8	42
277	An efficient halogen-free flame retardant for glass-fibre-reinforced poly(butylene terephthalate). Polymer Degradation and Stability, 2012, 97, 158-165.	5.8	42
278	Phase separation in electrospun nanofibers controlled by crystallization induced self-assembly. Journal of Materials Chemistry A, 2014, 2, 8416.	10.3	42
279	Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: From thermal crosslinking to flame retardance. Polymer Degradation and Stability, 2015, 122, 66-76.	5.8	42
280	A phosphorusâ€containing thermotropic liquid crystalline copolyester with low mesophase temperature and high flame retardance. Journal of Polymer Science Part A, 2008, 46, 5752-5759.	2.3	41
281	Synthesis and characterization of segmented poly(butylene succinate) urethane ionenes containing secondary amine cation. Polymer, 2014, 55, 4358-4368.	3.8	41
282	An efficient method to improve simultaneously the water resistance, flame retardancy and mechanical properties of POE intumescent flame-retardant systems. RSC Advances, 2015, 5, 16328-16339.	3.6	41
283	Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly. Carbohydrate Polymers, 2016, 151, 434-440.	10.2	41
284	Toward Super-Tough Poly(<scp>l</scp> -lactide) via Constructing Pseudo-Cross-link Network in Toughening Phase Anchored by Stereocomplex Crystallites at the Interface. ACS Applied Materials & Interfaces, 2018, 10, 26594-26603.	8.0	41
285	A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness. Chemical Engineering Journal, 2020, 381, 122539.	12.7	41
286	Pure copper phosphate nanostructures with controlled growth: a versatile support for enzyme immobilization. CrystEngComm, 2017, 19, 2996-3002.	2.6	40
287	Tailoring Schiff base cross-linking by cyano group toward excellent flame retardancy, anti-dripping and smoke suppression of PET. Polymer, 2018, 153, 78-85.	3.8	40
288	A novel inherently flame-retardant thermoplastic polyamide elastomer. Chemical Engineering Journal, 2020, 379, 122278.	12.7	40

#	Article	IF	CITATIONS
289	Phosphorus-containing organic-inorganic hybrid nanoparticles for the smoke suppression and flame retardancy of thermoplastic polyurethane. Polymer Degradation and Stability, 2020, 178, 109179.	5.8	40
290	Physical and chemical effects of diethylN,N?-diethanolaminomethylphosphate on flame retardancy of rigid polyurethane foam. Journal of Applied Polymer Science, 2001, 82, 276-282.	2.6	39
291	A new approach to improving flame retardancy, smoke suppression and anti-dripping of PET: Via arylene-ether units rearrangement reactions at high temperature. Polymer, 2015, 77, 21-31.	3.8	39
292	Porous gel materials from waste thermosetting unsaturated polyester for high-efficiency wastewater treatment. Chemical Engineering Journal, 2019, 361, 21-30.	12.7	39
293	Fully Bio-Based Pressure-Sensitive Adhesives with High Adhesivity Derived from Epoxidized Soybean Oil and Rosin Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 13261-13270.	6.7	39
294	A solar evaporator based on hollow polydopamine nanotubes with all-in-one synergic design for highly-efficient water purification. Journal of Materials Chemistry A, 2021, 9, 15776-15786.	10.3	39
295	Multifunctional protective aerogel with superelasticity over â^'196 to 500 °C. Nano Research, 2022, 15, 7797-7805.	10.4	39
296	Chitosan-graft poly(p-dioxanone) copolymers: preparation, characterization, and properties. Carbohydrate Research, 2009, 344, 801-807.	2.3	38
297	A novel flame-retardant acrylonitrile-butadiene-styrene system based on aluminum isobutylphosphinate and red phosphorus: Flame retardance, thermal degradation and pyrolysis behavior. Polymer Degradation and Stability, 2014, 109, 184-193.	5.8	38
298	Biodegradable polylactide based materials with improved crystallinity, mechanical properties and rheological behaviour by introducing a long-chain branched copolymer. RSC Advances, 2015, 5, 42162-42173.	3.6	38
299	A Novel Organophosphorus Hybrid with Excellent Thermal Stability: Core–Shell Structure, Hybridization Mechanism, and Application in Flame Retarding Semi-Aromatic Polyamide. ACS Applied Materials & Interfaces, 2016, 8, 881-890.	8.0	38
300	Flexible Photonic Cellulose Nanocrystal Films as a Platform with Multisensing Functions. ACS Sustainable Chemistry and Engineering, 2020, 8, 18484-18491.	6.7	38
301	Flame-responsive aryl ether nitrile structure towards multiple fire hazards suppression of thermoplastic polyester. Journal of Hazardous Materials, 2021, 403, 123714.	12.4	38
302	Toughening of Polylactide with High Tensile Strength via Constructing an Integrative Physical Crosslinking Network Based on Ionic Interactions. Macromolecules, 2021, 54, 291-301.	4.8	38
303	A highly efficient approach for dehydrochlorinating polyvinyl chloride: catalysis by 1-butyl-3-methylimidazolium chloride. Green Chemistry, 2010, 12, 1062.	9.0	37
304	Nonisothermal and Isothermal Cold Crystallization Behaviors of Biodegradable Poly(<i>p</i> -dioxanone). Industrial & Engineering Chemistry Research, 2011, 50, 4471-4477.	3.7	37
305	A facile strategy to fabricate highly-stretchable self-healing poly(vinyl alcohol) hybrid hydrogels based on metal–ligand interactions and hydrogen bonding. Polymer Chemistry, 2016, 7, 7269-7277.	3.9	37
306	A hybrid flame retardant for semi-aromatic polyamide: Unique structure towards self-compatibilization and flame retardation. Chemical Engineering Journal, 2018, 334, 1046-1054.	12.7	37

#	Article	IF	CITATIONS
307	Improving fire retardancy of ceramifiable polyolefin system via a hybrid of zinc borate@melamine cyanurate. Polymer Degradation and Stability, 2018, 153, 325-332.	5.8	37
308	A Bifunctional Alginate-Based Composite Hydrogel with Synergistic Pollutant Adsorption and Photocatalytic Degradation Performance. Industrial & Engineering Chemistry Research, 2019, 58, 13133-13144.	3.7	37
309	Superamphiphobic and flame-retardant coatings with highly chemical and mechanical robustness. Chemical Engineering Journal, 2021, 421, 127793.	12.7	37
310	In situ reinforced and flame-retarded polycarbonate by a novel phosphorus-containing thermotropic liquid crystalline copolyester. Polymer, 2011, 52, 4150-4157.	3.8	35
311	Chemical recycling of fiber-reinforced epoxy resin using a polyethylene glycol/NaOH system. Journal of Reinforced Plastics and Composites, 2014, 33, 2106-2114.	3.1	35
312	Biobased Poly(furfuryl alcohol)/Clay Aerogel Composite Prepared by a Freeze-Drying Process. ACS Sustainable Chemistry and Engineering, 2016, 4, 2601-2605.	6.7	35
313	A superhydrophobic and self-cleaning photoluminescent protein film with high weatherability. Chemical Engineering Journal, 2017, 326, 436-442.	12.7	35
314	Flame Retardation of Natural Rubber: Strategy and Recent Progress. Polymers, 2020, 12, 429.	4.5	35
315	Energy-Efficient Conversion of Amine-Cured Epoxy Resins into Functional Chemicals Based on Swelling-Induced Nanopores. ACS Sustainable Chemistry and Engineering, 2020, 8, 2226-2235.	6.7	35
316	Multifunctional interlayer with simultaneously capturing and catalytically converting polysulfides for boosting safety and performance of lithium-sulfur batteries at high-low temperatures. Journal of Energy Chemistry, 2020, 50, 248-259.	12.9	35
317	Bio-Based Flame-Retardant and Smoke-Suppressing Wood Plastic Composites Enabled by Phytic Acid Tyramine Salt. ACS Sustainable Chemistry and Engineering, 2022, 10, 5055-5066.	6.7	35
318	Durable flame-retardant cotton fabrics with tannic acid complexed by various metal ions. Polymer Degradation and Stability, 2022, 201, 109997.	5.8	35
319	A novel EVA composite with simultaneous flame retardation and ceramifiable capacity. RSC Advances, 2015, 5, 51248-51257.	3.6	34
320	Creating Poly(tetramethylene oxide) Glycol-Based Networks with Tunable Two-Way Shape Memory Effects via Temperature-Switched Netpoints. Macromolecules, 2017, 50, 5155-5164.	4.8	34
321	Agricultural Application and Environmental Degradation of Photo-Biodegradable Polyethylene Mulching Films. Journal of Polymers and the Environment, 2004, 12, 7-10.	5.0	33
322	Rheology, Crystallization, and Biodegradability of Blends Based on Soy Protein and Chemically Modified Poly(butylene succinate). Industrial & Engineering Chemistry Research, 2009, 48, 4817-4825.	3.7	33
323	Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene) Tj ETQq1 1 	0.784314 rg 2.7	gBŢ ¦Overloci
324	A pH-responsive chitosan- <i>b</i> -poly(p-dioxanone) nanocarrier: formation and efficient antitumor	2.6	33

drug delivery. Nanotechnology, 2013, 24, 145101.

2.6 33

#	Article	IF	CITATIONS
325	Dual effect of dynamic vulcanization of biobased unsaturated polyester: Simultaneously enhance the toughness and fire safety of Poly(lactic acid). Composites Part B: Engineering, 2019, 175, 107069.	12.0	33
326	Solubility parameters of poly(sulfonyldiphenylene phenylphosphonate) and its miscibility with poly(ethylene terephthalate). Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2296-2301.	2.1	32
327	Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends. Materials Chemistry and Physics, 2006, 98, 172-177.	4.0	32
328	Novel "star anise―like nano aggregate prepared by self-assembling of preformed microcrystals from branched crystalline-coil alternating multi-block copolymer. Chemical Communications, 2011, 47, 4198.	4.1	32
329	Effect of two types of iron MMTs on the flame retardation of LDPE composite. Polymer Degradation and Stability, 2014, 103, 1-10.	5.8	32
330	Flame-retardant wrapped ramie fibers towards suppressing "candlewick effect―of polypropylene/ramie fiber composites. Chinese Journal of Polymer Science (English Edition), 2015, 33, 84-94.	3.8	32
331	Improvement of the flame retardancy of wood-fibre/polypropylene composites with ideal mechanical properties by a novel intumescent flame retardant system. RSC Advances, 2015, 5, 59865-59873.	3.6	32
332	"AND―logic gate regulated pH and reduction dual-responsive prodrug nanoparticles for efficient intracellular anticancer drug delivery. Chemical Communications, 2015, 51, 93-96.	4.1	32
333	Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry. Polymer, 2018, 153, 637-642.	3.8	32
334	Toughening Epoxy Resin Using a Liquid Crystalline Elastomer for Versatile Application. ACS Applied Polymer Materials, 2019, 1, 2291-2301.	4.4	32
335	Bioinspired fabrication of asymmetric wood materials for directional liquid manipulation and transport. Chemical Engineering Journal, 2020, 383, 123168.	12.7	32
336	Ultralight Biomass Aerogels with Multifunctionality and Superelasticity Under Extreme Conditions. ACS Applied Materials & Interfaces, 2021, 13, 59231-59242.	8.0	32
337	Facile fabrication of intrinsically fire-safety epoxy resin cured with phosphorus-containing transition metal complexes for flame retardation, smoke suppression, and latent curing behavior. Chemical Engineering Journal, 2022, 442, 136097.	12.7	32
338	A formaldehydeâ€free flame retardant wood particleboard system based on two omponent polyurethane adhesive. Journal of Applied Polymer Science, 2008, 108, 1216-1222.	2.6	31
339	Fabrication of novel thermo-responsive electrospun nanofibrous mats and their application in bioseparation. European Polymer Journal, 2011, 47, 1885-1892.	5.4	31
340	Aromatic-aliphatic random and block copolyesters: synthesis, sequence distribution and thermal properties. Polymer Chemistry, 2012, 3, 1344.	3.9	31
341	A facile method to produce PBS-PEG/CNTs nanocomposites with controllable electro-induced shape memory effect. Polymer Chemistry, 2013, 4, 3987.	3.9	31
342	Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin. Polymers for Advanced Technologies, 2014, 25, 861-871.	3.2	31

#	Article	IF	CITATIONS
343	Thermally stable and flame-retardant poly(vinyl alcohol)/montmorillonite aerogel via a facile heat treatment. Chinese Chemical Letters, 2018, 29, 433-436.	9.0	31
344	Simultaneously enhance both the flame retardancy and toughness of polylactic acid by the cooperation of intumescent flame retardant and bio-based unsaturated polyester. Polymer Degradation and Stability, 2019, 168, 108961.	5.8	31
345	Synergistic catalysis of binary alkalis for the recycling of unsaturated polyester under mild conditions. Green Chemistry, 2019, 21, 3006-3012.	9.0	31
346	Transesterification-controlled compatibility and microfibrillation in PC–ABS composites reinforced by phosphorus-containing thermotropic liquid crystalline polyester. Polymer, 2009, 50, 3037-3046.	3.8	30
347	Acrylonitrile–Butadiene–Styrene Terpolymer with Metal Hypophosphites: Flame Retardance and Mechanism Research. Industrial & Engineering Chemistry Research, 2014, 53, 2299-2307.	3.7	30
348	PBT/PC Blends Compatibilized and Toughened via Copolymers in Situ Formed by MgO-Catalyzed Transesterification. Industrial & Engineering Chemistry Research, 2015, 54, 1282-1291.	3.7	30
349	Modification of poly(propylene carbonate) with chain extender ADR-4368 to improve its thermal, barrier, and mechanical properties. Polymer Testing, 2016, 54, 301-307.	4.8	30
350	Flexible and electro-induced shape memory Poly(Lactic Acid)-based material constructed by inserting a main-chain liquid crystalline and selective localization of carbon nanotubes. Composites Science and Technology, 2019, 173, 1-6.	7.8	30
351	Carbon fiber-based polymer composite via ceramization toward excellent electromagnetic interference shielding performance and high temperature resistance. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105769.	7.6	30
352	Ultrafast, cost-effective and scaled-up recycling of aramid products into aramid nanofibers: mechanism, upcycling, closed-loop recycling. Green Chemistry, 2021, 23, 7646-7658.	9.0	30
353	Ultralow-density carbon foam composites with bean-like Co-embedded carbon nanotube whiskers towards high-performance microwave absorption. Journal of Alloys and Compounds, 2021, 863, 158090.	5.5	30
354	Effects of molecular weights of poly(p-dioxanone) on its thermal, rheological and mechanical properties and in vitro degradability. Materials Chemistry and Physics, 2004, 87, 218-221.	4.0	29
355	Preparation and characterization of a novel biodegradable poly(p-dioxanone)/montmorillonite nanocomposite. Journal of Polymer Science Part A, 2005, 43, 2298-2303.	2.3	29
356	Self-association and micelle formation of biodegradable poly(ethylene glycol)-poly(L-lactic acid) amphiphilic di-block co-polymers. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 747-763.	3.5	29
357	Thermal properties and non-isothermal crystallization behavior of biodegradable poly(p-dioxanone)/poly(vinyl alcohol) blends. Polymer International, 2006, 55, 383-390.	3.1	29
358	Effects of phosphorus-containing thermotropic liquid crystal copolyester on pyrolysis of PET and its flame retardant mechanism. Polymer Degradation and Stability, 2008, 93, 2066-2070.	5.8	29
359	Poly(ethylene glycol) enhanced dehydrochlorination of poly(vinyl chloride). Journal of Hazardous Materials, 2009, 163, 1408-1411.	12.4	29
360	Soy protein isolate films with improved property via a facile surface coating. Industrial Crops and Products, 2014, 54, 102-108.	5.2	29

#	Article	IF	CITATIONS
361	A Novel Linear-Chain Polyamide Charring Agent for the Fire Safety of Noncharring Polyolefin. Industrial & Engineering Chemistry Research, 2016, 55, 7132-7141.	3.7	29
362	Facile batch synthesis of porous vaterite microspheres for high efficient and fast removal of toxic heavy metal ions. Journal of Environmental Chemical Engineering, 2017, 5, 4505-4515.	6.7	29
363	From a body temperature-triggered reversible shape-memory material to high-sensitive bionic soft actuators. Applied Materials Today, 2020, 18, 100463.	4.3	29
364	A highly-effective ionic liquid flame retardant towards fire-safety waterborne polyurethane (WPU) with excellent comprehensive performance. Polymer, 2020, 205, 122780.	3.8	29
365	Fire hazards management for polymeric materials via synergy effects of pyrolysates-fixation and aromatized-charring. Journal of Hazardous Materials, 2020, 389, 122040.	12.4	29
366	Eco-friendly synergistic cross-linking flame-retardant strategy with smoke and melt-dripping suppression for condensation polymers. Composites Part B: Engineering, 2021, 211, 108664.	12.0	29
367	Chemical recovery of thermosetting unsaturated polyester resins. Green Chemistry, 2022, 24, 701-712.	9.0	29
368	A prodrug strategy based on chitosan for efficient intracellular anticancer drug delivery. Nanotechnology, 2014, 25, 255101.	2.6	28
369	Highly-efficient, Rapid and continuous separation of surfactant-stabilized Oil/Water emulsions by selective under-liquid adhering emulsified droplets. Journal of Hazardous Materials, 2020, 400, 123132.	12.4	28
370	Multiple functional materials from crushing waste thermosetting resins. Materials Horizons, 2021, 8, 234-243.	12.2	28
371	Controlling Cross-Linking Networks with Different Imidazole Accelerators toward High-Performance Epoxidized Soybean Oil-Based Thermosets. ACS Sustainable Chemistry and Engineering, 2021, 9, 3267-3277.	6.7	28
372	A bio-based epoxy resin derived from p-hydroxycinnamic acid with high mechanical properties and flame retardancy. Chinese Chemical Letters, 2022, 33, 4912-4917.	9.0	28
373	Thermogravimetric analysis of the decomposition of poly(1,4-dioxan-2-one)/starch blends. Polymer Degradation and Stability, 2003, 81, 415-421.	5.8	27
374	A study on grafting poly(1,4-dioxan-2-one) onto starch via 2,4-tolylene diisocyanate. Carbohydrate Polymers, 2006, 65, 28-34.	10.2	27
375	Fabrication and characterization of hydrophilic electrospun membranes made from the block copolymer of poly(ethylene glycol-co-lactide). Journal of Biomedical Materials Research - Part A, 2007, 82A, 680-688.	4.0	27
376	A Novel Multiblock Poly(ester urethane) Based on Poly(butylene succinate) and Poly(ethylene) Tj ETQq0 0 0 rgBT 2065-2072.	Overlock 3.7	210 Tf 50 14 27
377	Flame retardation of glassâ€fiberâ€reinforced polyamide 6 by combination of aluminum phenylphosphinate with melamine pyrophosphate. Polymers for Advanced Technologies, 2011, 22, 1166-1173.	3.2	27
378	Ionic liquid coated lipase: Green synthesis of high molecular weight poly(1,4-dioxan-2-one). Journal of Molecular Catalysis B: Enzymatic, 2012, 77, 46-52.	1.8	27

#	Article	IF	CITATIONS
379	Reversible photoswitching aggregation and dissolution of spiropyran-functionalized copolymer and light-responsive FRET process. Chinese Chemical Letters, 2014, 25, 389-396.	9.0	27
380	Improving the impact property and heatâ€resistance of PLA/PC blends through coupling molecular chains at the interface. Polymers for Advanced Technologies, 2015, 26, 1247-1258.	3.2	27
381	Simultaneous improvement in the flame retardancy and water resistance of PP/APP through coating UV-curable pentaerythritol triacrylate onto APP. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0.78431	4 3g BT /O\	vezbock 10 T
382	Block self-cross-linkable poly(ethylene terephthalate) copolyester via solid-state polymerization: Crystallization, cross-linking, and flame retardance. Polymer, 2015, 70, 68-76.	3.8	27
383	A dimensional stable hydrogel-born foam with enhanced mechanical and thermal insulation and fire-retarding properties via fast microwave foaming. Chemical Engineering Journal, 2020, 399, 125781.	12.7	27
384	Durable macromolecular firefighting for unsaturated polyester via integrating synergistic charring and hydrogen bond. Chemical Engineering Journal, 2022, 443, 136365.	12.7	27
385	Shape-memory poly(p-dioxanone)–poly(ɛ-caprolactone)/sepiolite nanocomposites with enhanced recovery stress. Chinese Chemical Letters, 2015, 26, 1221-1224.	9.0	26
386	Fully bio-based, highly toughened and heat-resistant poly(L-lactide) ternary blends via dynamic vulcanization with poly(D-lactide) and unsaturated bioelastomer. Science China Materials, 2017, 60, 1008-1022.	6.3	26
387	Self-assembly of stearic acid into nano flowers induces the tunable surface wettability of polyimide film. Materials and Design, 2018, 138, 30-38.	7.0	26
388	A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene) Tj ETQq0 0 0 rgBT	Overloch	۲ 10 Tf 50 3 25
389	Flammability and thermal degradation behaviors of phosphorus-containing copolyester/BaSO4 nanocomposites. Journal of Applied Polymer Science, 2006, 102, 564-570.	2.6	25
390	Synthesis of poly(lactic acid-b-p-dioxanone) block copolymers from ring opening polymerization of p-dioxanone by poly(L-lactic acid) macroinitiators. Polymer Bulletin, 2008, 61, 139-146.	3.3	25
391	Synthesis of highâ€molecularâ€weight aliphatic–aromatic copolyesters from poly(ethyleneâ€ <i>co</i> â€1,6â€hexene terephthalate) and poly(<scp>L</scp> â€lactic acid) by chain extension. Journal of Polymer Science Part A, 2009, 47, 5898-5907.	2.3	25
392	Oxidation of natural rubber using a sodium tungstate/acetic acid/hydrogen peroxide catalytic system. Polymer Degradation and Stability, 2010, 95, 1077-1082.	5.8	25
393	Characterization of the effect of REC on the compatibility of PHBH and PLA. Polymer Testing, 2015, 42, 17-25.	4.8	25
394	Oneâ€Step Approach to the Growth of ZnO Nanoâ€ / Microrods on Cellulose toward Its Durable Superhydrophobicity. Advanced Materials Interfaces, 2017, 4, 1700550.	3.7	25
395	Autofluorescence of hydrogels without a fluorophore. Soft Matter, 2019, 15, 3588-3594.	2.7	25
396	Nanoflake-Constructed Supramolecular Hierarchical Porous Microspheres for Fire-Safety and Highly Efficient Thermal Energy Storage. ACS Applied Materials & Interfaces, 2020, 12, 28700-28710.	8.0	25

#	Article	IF	CITATIONS
397	Highly efficient flame retardation of polyester fabrics via novel DOPO-modified sol-gel coatings. Polymer, 2021, 226, 123761.	3.8	25
398	In vitro degradation of biodegradable blending materials based on poly(p-dioxanone) and poly(vinyl) Tj ETQq0 C Research - Part A, 2007, 80A, 453-465.	0 rgBT /O 4.0	verlock 10 Tf 5 24
399	Preparation, characterization and hydrolytic degradation of poly[p-dioxanone-(butylene succinate)] multiblockcopolymer. European Polymer Journal, 2009, 45, 3043-3057.	5.4	24
400	Fractional Crystallization and Homogeneous Nucleation of Confined PEG Microdomains in PBS-PEG Multiblock Copolymers. Journal of Physical Chemistry B, 2013, 117, 10665-10676.	2.6	24
401	Block phosphorus-containing poly(trimethylene terephthalate) copolyester via solid-state polymerization: retarded crystallization and melting behaviour. CrystEngComm, 2013, 15, 2688.	2.6	24
402	Integrating shape-memory technology and photo-imaging on a polymer platform for a high-security information storage medium. Journal of Materials Chemistry C, 2018, 6, 10422-10427.	5.5	24
403	Hybrid Nanorods Composed of Titanium, Silicon, and Organophosphorus as Additives for Flame-Retardant Polycarbonate. ACS Applied Nano Materials, 2019, 2, 4859-4868.	5.0	24
404	Novel Ultrathin Layered Double Hydroxide Nanosheets with In Situ Formed Oxidized Phosphorus as Anions for Simultaneous Fire Resistance and Mechanical Enhancement of Thermoplastic Polyurethane. ACS Applied Polymer Materials, 2019, 1, 1979-1990.	4.4	24
405	How Hydrogen Bond Interactions Affect the Flame Retardancy and Antiâ€Dripping Performances of PET. Macromolecular Materials and Engineering, 2020, 305, 1900661.	3.6	24
406	Hypophosphite tailored graphitized hierarchical porous biochar toward highly efficient solar thermal energy harvesting and stable Storage/Release. Chemical Engineering Journal, 2021, 420, 129942.	12.7	24
407	Preparation of nano-MgO/Carbon composites from sucrose-assisted synthesis for highly efficient dehydrochlorination process. Materials Letters, 2008, 62, 1887-1889.	2.6	23
408	Preparation and Drug-Delivery Potential of Metronidazole-Loaded PELA Tri-block Co-polymeric Electrospun Membranes. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1321-1334.	3.5	23
409	Phosphorus-Containing Poly(ethylene terephthalate): Solid-State Polymerization and Its Sequential Distribution. Industrial & Engineering Chemistry Research, 2013, 52, 5326-5333.	3.7	23
410	Synergistic flameâ€retardant effect of halloysite nanotubes on intumescent flame retardant in LDPE. Journal of Applied Polymer Science, 2014, 131, .	2.6	23
411	Novel phosphorus-containing halogen-free ionic liquids: effect of sulfonate anion size on physical properties, biocompatibility, and flame retardancy. RSC Advances, 2016, 6, 52485-52494.	3.6	23
412	Influence of small difference in structure of polyamide charring agents on their flame-retardant efficiency in EVA. Polymer Degradation and Stability, 2017, 135, 130-139.	5.8	23
413	Concurrent Superhydrophobicity and Thermal Energy Storage of Microcapsule with Superior Thermal Stability and Durability. ACS Sustainable Chemistry and Engineering, 2017, 5, 7759-7767.	6.7	23
414	Poly(ethylene-co-vinyl acetate)/graphene shape-memory actuator with a cyclic thermal/light dual-sensitive capacity. Composites Science and Technology, 2019, 173, 41-46.	7.8	23

#	Article	IF	CITATIONS
415	Superhydrophobic magnetic hollow carbon microspheres with hierarchical micro/nano-structure for ultrafast and highly-efficient multitasking oil-water separation. Carbon, 2021, 174, 70-78.	10.3	23
416	Toward strong and super-toughened PLA via incorporating a novel fully bio-based copolyester containing cyclic sugar. Composites Part B: Engineering, 2021, 207, 108558.	12.0	23
417	An Effective Green Porous Structural Adhesive for Thermal Insulating, Flame-Retardant, and Smoke-Suppressant Expandable Polystyrene Foam. Engineering, 2022, 17, 151-160.	6.7	23
418	A kinked unitâ€containing thermotropic liquid crystalline copolyester with low glass transition temperature and broad phase transition temperature. Journal of Polymer Science Part A, 2009, 47, 4703-4709.	2.3	22
419	Nonisothermal Crystallization Kinetics of Poly(ϵ-Caprolactone)/Montmorillonite Nanocomposites. Journal of Macromolecular Science - Physics, 2009, 48, 710-722.	1.0	22
420	Preparation and Rheological Behaviors of Thermoplastic Poly(vinyl alcohol) Modified by Lactic Acid. Industrial & Engineering Chemistry Research, 2011, 50, 9123-9130.	3.7	22
421	Durable flame retardant finishing of PET/cotton blends using a Novel PVAâ€based phosphorusâ€nitrogen polymer. Journal of Applied Polymer Science, 2011, 122, 342-353.	2.6	22
422	Dynamic Origin and Thermally Induced Evolution of New Selfâ€Assembled Aggregates from an Amphiphilic Combâ€Like Graft Copolymer: A Multiscale and Multimorphological Procedure. Chemistry - A European Journal, 2012, 18, 12237-12241.	3.3	22
423	Improvement of biocompatibility and biodegradability of poly(ethylene succinate) by incorporation of poly(ethylene glycol) segments. Polymer, 2012, 53, 481-489.	3.8	22
424	Modes of action of a mono-component intumescent flame retardant MAPP in polyethylene-octene elastomer. Polymer Degradation and Stability, 2017, 138, 142-150.	5.8	22
425	Poly(ionic liquid)â€Based Hybrid Hierarchical Freeâ€Standing Electrolytes with Enhanced Ion Transport and Fire Retardancy Towards Longâ€Cycleâ€Life and Safe Lithium Batteries. ChemElectroChem, 2019, 6, 3674-3683.	3.4	22
426	Novel Biodegradable Poly(1,4-dioxan-2-one) Grafted Soy Protein Copolymer: Synthesis and Characterization. Industrial & Engineering Chemistry Research, 2008, 47, 8233-8238.	3.7	21
427	Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality. Nanoscale Research Letters, 2009, 4, 303-306.	5.7	21
428	Novel Pleuromutilin Derivatives with Excellent Antibacterial Activity Against <i>Staphylococcus aureus</i> . Chemical Biology and Drug Design, 2009, 73, 655-660.	3.2	21
429	A novel thermotropic liquid crystalline copolyester containing phosphorus and aromatic ether moity toward high flame retardancy and low mesophase temperature. Journal of Polymer Science Part A, 2010, 48, 1182-1189.	2.3	21
430	Preparation of Poly(<i>p</i> -dioxanone)/Sepiolite Nanocomposites with Excellent Strength/Toughness Balance via Surface-Initiated Polymerization. Industrial & Engineering Chemistry Research, 2011, 50, 10006-10016.	3.7	21
431	Synthesis and micellization of amphiphilic multi-branched poly(p-dioxanone)-block-poly(ethylene) Tj ETQq1 1 0.7	784314 rgE	BT /Overlock 21
432	Non-isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-diethylene glycol) Tj ETQq0	0 0.1gBT /C	overlock 10 Tr

#	Article	IF	CITATIONS
433	Temperature dependent morphological evolution and the formation mechanism of anisotropic nano-aggregates from a crystalline-coil block copolymer of poly(p-dioxanone) and poly(ethylene) Tj ETQq1 1 0.784	₽3.1 74 rgBT	/ D verlock 1
434	Facile fabrication of ternary nanocomposites with selective dispersion of multi-walled carbon nanotubes to access multi-stimuli-responsive shape-memory effects. Materials Chemistry Frontiers, 2017, 1, 343-353.	5.9	21
435	Durability, anti-corrosion and self-clean in air/oil of a transparent superhydrophobic polyimide film. Applied Materials Today, 2018, 10, 18-23.	4.3	21
436	Boosting safety and performance of lithium-ion battery enabled by cooperation of thermotolerant fire-retardant composite membrane and nonflammable electrolyte. Chemical Engineering Journal, 2022, 432, 134394.	12.7	21
437	Cosolvent-promoted selective non-aqueous hydrolysis of PET wastes and facile product separation. Green Chemistry, 2022, 24, 3284-3292.	9.0	21
438	A rapid synthesis of poly (p-dioxanone) by ring-opening polymerization under microwave irradiation. Polymer Bulletin, 2006, 57, 873-880.	3.3	20
439	A new approach to prepare high molecular weight poly(p-dioxanone) by chain-extending from dihydroxyl terminated propolymers. European Polymer Journal, 2008, 44, 465-474.	5.4	20
440	Rapid ringâ€opening polymerization of 1,4â€dioxanâ€2â€one initiated by titanium alkoxides. Journal of Polymer Science Part A, 2010, 48, 5885-5890.	2.3	20
441	Crystallization behavior and morphology of double crystalline poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 4	122 Td (suc
442	Isothermal Crystallization Behavior of Biodegradable P(BS-b-PEGS) Multiblock Copolymers. Industrial & Engineering Chemistry Research, 2012, 51, 8262-8272.	3.7	20
443	Nanofibers with Very Fine Core–Shell Morphology from Anisotropic Micelle of Amphiphilic Crystalline-Coil Block Copolymer. ACS Nano, 2013, 7, 4892-4901.	14.6	20
444	Succinic Acid Based Biodegradable Thermoplastic Poly(ester urethane) Elastomers: Effects of Segment Ratios and Lengths on Physical Properties. Industrial & Engineering Chemistry Research, 2014, 53, 1404-1414.	3.7	20
445	Unique two-way free-standing thermo- and photo-responsive shape memory azobenzene-containing polyurethane liquid crystal network. Science China Materials, 2020, 63, 2590-2598.	6.3	20
446	Novel liquid crystalline copolyester containing amphi-mesogenic units toward multiple stimuli-response behaviors. Journal of Materials Chemistry C, 2017, 5, 9702-9711.	5.5	19
447	Strategy for Constructing Shape-Memory Dynamic Networks through Charge-Transfer Interactions. ACS Macro Letters, 2018, 7, 705-710.	4.8	19
448	Effects of Sodium Montmorillonite on the Preparation and Properties of Cellulose Aerogels. Polymers, 2019, 11, 415.	4.5	19
449	Semi-aromatic polyamides containing fluorenyl pendent toward excellent thermal stability, mechanical properties and dielectric performance. Polymer, 2021, 224, 123757.	3.8	19
450	Ultra-high fire-safety unsaturated polyesters enabled by self-assembled micro/nano rod from Schiff base, diphenylphosphinyl group and nickel (II) metal. Composites Part B: Engineering, 2022, 242, 110032.	12.0	19

#	Article	IF	CITATIONS
451	Effects of molecular weights of bioabsorbable poly(p-dioxanone) on its crystallization behaviors. Journal of Applied Polymer Science, 2006, 100, 2331-2335.	2.6	18
452	AN S- AND P-CONTAINING FLAME RETARDANT FOR POLYPROPYLENE. Chinese Journal of Polymer Science (English Edition), 2008, 26, 299.	3.8	18
453	Thermal Degradation and Combustion Behaviors of Flame-Retardant Polypropylene/Thermoplastic Polyurethane Blends. Journal of Macromolecular Science - Physics, 2009, 48, 889-909.	1.0	18
454	Synthesis, crystallization and hydrolysis of aromatic–aliphatic copolyester: Poly(trimethylene) Tj ETQq0 0 0 rgBī	[[Overlock 5.8	₹ 10 Tf 50 6 18
455	Crystallization Kinetics and Spherulitic Morphologies of Biodegradable Poly(butylene) Tj ETQq1 1 0.784314 rgBT (Research, 2013, 52, 1591-1599.	Overlock 3.7	10 Tf 50 58 18
456	Low flammability foam-like materials based on epoxy, tannic acid, and sodium montmorillonite clay. Green Materials, 2015, 3, 43-51.	2.1	18
457	Flexible Material Based on Poly(lactic acid) and Liquid Crystal with Multishape Memory Effects. ACS Sustainable Chemistry and Engineering, 2016, 4, 3820-3829.	6.7	18
458	New Strategy to Access Dualâ€Stimuliâ€Responsive Tripleâ€Shapeâ€Memory Effect in a Nonâ€overlapping Patter Macromolecular Rapid Communications, 2017, 38, 1600664.	^{'n} 3.9	18
459	Fire behavior of novel imidized norbornene-containing poly(ethylene terephthalate) copolymers: Influence of retro-Diels-Alder reaction at high temperature. Polymer Degradation and Stability, 2017, 146, 105-112.	5.8	18
460	Effect of biphenyl biimide structure on the thermal stability, flame retardancy and pyrolysis behavior of PET. Polymer Degradation and Stability, 2018, 155, 162-172.	5.8	18
461	Fast microwave-assisted hydrolysis of unsaturated polyester resin into column packing for rapid purifying of dye wastewater. Journal of Hazardous Materials, 2020, 384, 121465.	12.4	18
462	Green Fabrication of High-Performance Chitin Nanowhiskers/PVA Composite Films with a "Brick-and-Mortar―Structure. ACS Sustainable Chemistry and Engineering, 2020, 8, 17807-17815.	6.7	18
463	Bio-inspired non-iridescent structural coloration enabled by self-assembled cellulose nanocrystal composite films with balanced ordered/disordered arrays. Composites Part B: Engineering, 2022, 229, 109456.	12.0	18
464	Crystallization and morphology of starch-g-poly(1,4-dioxan-2-one) copolymers. Polymer, 2004, 45, 7961-7968.	3.8	17
465	Synthesis and nuclear magnetic resonance analysis of starch-g-poly(1,4-dioxan-2-one) copolymers. Journal of Polymer Science Part A, 2004, 42, 3417-3422.	2.3	17
466	Enhanced thermal stability of poly(1,4-dioxan-2-one) in melt by adding a chelator. Polymer Degradation and Stability, 2006, 91, 2465-2470.	5.8	17
467	Miscibility and Crystallization Behaviors of Poly(butylene succinate) and Poly(<scp>l</scp> -lactic) Tj ETQq1 1 0.78 Research, 2010, 49, 9870-9876.	34314 rgB ⁻ 3.7	T /Overlock 17
468	PET in situ composites improved both flame retardancy and mechanical properties by phosphorus-containing thermotropic liquid crystalline copolyester with aromatic ether moiety. Composites Science and Technology, 2012, 72, 649-655.	7.8	17

#	Article	IF	CITATIONS
469	Phosphorus-containing poly(trimethylene terephthalate) derived from 2-(6-oxido-6H-dibenz〈c,e〉〈1,2〉oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene: Synthesis, thermal degradation, combustion and pyrolysis behavior. Journal of Analytical and Applied Pyrolysis, 2013, 99, 40-48.	5.5	17
470	Sustainable waterborne polyurethane ionomer reinforced poly(vinyl alcohol) composite films. Composites Science and Technology, 2014, 96, 109-115.	7.8	17
471	PET-based copolyesters with bisphenol A or bisphenol F structural units: Their distinct differences in pyrolysis behaviours and flame-retardant performances. Polymer Degradation and Stability, 2015, 120, 158-168.	5.8	17
472	A fully bio-based composite coating with mechanical robustness and dual superlyophobicity for efficient two-way oil/water separation. Journal of Colloid and Interface Science, 2019, 549, 123-132.	9.4	17
473	Effect of Bioâ€Based Cobalt Alginate on the Fire Safety and Mechanical Properties for Epoxy Resin. Macromolecular Materials and Engineering, 2021, 306, 2100466.	3.6	17
474	Photonic Cellulose Films with Vivid Structural Colors: Fabrication and Selectively Chemical Response. Biomacromolecules, 2022, 23, 1662-1671.	5.4	17
475	Controlled synthesis and closed-loop chemical recycling of biodegradable copolymers with composition-dependent properties. Science China Chemistry, 2022, 65, 943-953.	8.2	17
476	Synthesis, characterization, and thermal properties of a novel pentaerythritol-initiated star-shaped poly(p-dioxanone). Journal of Polymer Science Part A, 2006, 44, 1245-1251.	2.3	16
477	ABA triblock copolymers from poly(p-dioxanone) and poly(ethylene glycol). Journal of Applied Polymer Science, 2006, 102, 1092-1097.	2.6	16
478	A water-soluble PPDO/PEG alternating multiblock copolymer: Synthesis, characterization, and its gel–sol transition behavior. European Polymer Journal, 2009, 45, 1190-1197.	5.4	16
479	Wellâ€defined amphiphilic poly(<i>p</i> â€dioxanone)â€grafted poly(vinyl alcohol) copolymers: Synthesis and micellization. Journal of Polymer Science Part A, 2010, 48, 4811-4822.	2.3	16
480	Miscibility, crystallization and mechanical properties of biodegradable blends of poly(l-lactic acid) and poly(butylene succinate-b-ethylene succinate) multiblock copolymer. Thermochimica Acta, 2012, 539, 16-22.	2.7	16
481	Dechlorination of poly(vinyl chloride) by 1-butyl-3-methylimidazoliumhydroxide. Polymer Degradation and Stability, 2012, 97, 145-148.	5.8	16
482	Flameâ€retardant polycarbonate/acrylonitrileâ€butadieneâ€styrene based on red phosphorus encapsulated by polysiloxane: Flame retardance, thermal stability, and water resistance. Journal of Applied Polymer Science, 2012, 123, 2867-2874.	2.6	16
483	In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles. Cellulose, 2014, 21, 3097-3105.	4.9	16
484	Synthesis and performances of poly(butylene-succinate) with enhanced viscosity and crystallization rate via introducing a small amount of diacetylene groups. Chinese Chemical Letters, 2017, 28, 354-357.	9.0	16
485	From shape and color memory PCL network to access high security anti-counterfeit material. Polymer, 2019, 172, 52-57.	3.8	16
486	Recycling waste thermosetting unsaturated polyester resins into oligomers for preparing amphiphilic aerogels. Waste Management, 2021, 126, 89-96.	7.4	16

#	Article	IF	CITATIONS
487	Aromatic Schiff Base-Based polymeric phase change materials for Safe, Leak-Free, and efficient thermal energy management. Chemical Engineering Journal, 2022, 437, 135461.	12.7	16
488	Integration of upcycling and closed-loop recycling through alternative cyclization–depolymerization. Green Chemistry, 2022, 24, 4490-4497.	9.0	16
489	Effect of Self-Nucleation and Stress-Induced Crystallization on the Tunable Two-Way Shape-Memory Effect of a Semicrystalline Network. Macromolecules, 2022, 55, 5104-5114.	4.8	16
490	Copolymerization of poly(vinyl alcohol)-graft-poly(1,4-dioxan-2-one) with designed molecular structure by a solid-state polymerization method. Journal of Polymer Science Part A, 2006, 44, 3083-3091.	2.3	15
491	Microwaveâ€essisted ringâ€opening polymerization of <i>p</i> â€dioxanone. Journal of Polymer Science Part A, 2008, 46, 3207-3213.	2.3	15
492	Ringâ€opening polymerization of 1,4â€dioxanâ€2â€one initiated by lanthanum isopropoxide in bulk. Journal of Polymer Science Part A, 2008, 46, 5214-5222.	2.3	15
493	Relationship between Microstructure and Mechanical Properties of Ethylene-Octene Copolymer Reinforced and Toughened PP. Journal of Macromolecular Science - Physics, 2009, 48, 351-364.	1.0	15
494	Flameâ€retardant and physical properties of poly(vinyl alcohol) chemically modified by diethyl chlorophosphate. Journal of Applied Polymer Science, 2012, 125, 3517-3523.	2.6	15
495	Pyrolysis study of poly(trimethylene terephthalate) and its phosphorus-containing copolyesters. Polymer Degradation and Stability, 2012, 97, 905-913.	5.8	15
496	Poly(ethylene succinate)-b-poly(butylene succinate) Multiblock Copolyesters: The Effects of Block Length and Composition on Physical Properties. Industrial & Engineering Chemistry Research, 2013, 52, 13669-13676.	3.7	15
497	Synthesis, characterization and isothermal crystallization behavior of poly(butylene) Tj ETQq1 1 0.784314 rgBT / Technologies, 2015, 26, 1003-1013.	Overlock I 3.2	10 Tf 50 347 15
498	Influence of catalysts used in synthesis of poly(p-dioxanone) on its thermal degradation behaviors. Polymer Degradation and Stability, 2015, 121, 253-260.	5.8	15
499	Properties regulation of poly(butylene succinate) ionomers through their ionic group distribution. Polymer, 2015, 66, 148-159.	3.8	15
500	Preparation and characterization of Poly(vinyl alcohol)/graphene nanocomposite with enhanced thermal stability using PEtVIm-Br as stabilizer and compatibilizer. Polymer Degradation and Stability, 2016, 131, 42-52.	5.8	15
501	Low Loading of Tannic Acid-Functionalized WS ₂ Nanosheets for Robust Epoxy Nanocomposites. ACS Applied Nano Materials, 2021, 4, 10419-10429.	5.0	15
502	Multicycling of Epoxy Thermoset Through a Twoâ€Step Strategy of Alcoholysis and Hydrolysis using a Selfâ€Separating Catalysis System. ChemSusChem, 2022, 15, .	6.8	15
503	Bioâ€based nickel alginate toward improving fire safety and mechanical properties of epoxy resin. Polymer Degradation and Stability, 2022, 200, 109945.	5.8	15
504	A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills. Journal of Hazardous Materials, 2022, 436, 129272.	12.4	15

#	Article	IF	CITATIONS
505	An efficient approach to synthesize polysaccharidesâ€ <i>graft</i> â€poly(<i>p</i> â€dioxanone) copolymers as potential drug carriers. Journal of Polymer Science Part A, 2009, 47, 5344-5353.	2.3	14
506	A novel organophosphorus flame retardant: Synthesis and durable finishing of poly(ethylene) Tj ETQq0 0 0 rgBT	/Overlock 2.6	10 Tf 50 702 14
507	Self-assembly, drug-delivery behavior, and cytotoxicity evaluation of amphiphilic chitosan-graft-poly(1,4-dioxan-2-one) copolymers. Journal of Polymer Research, 2012, 19, 1.	2.4	14
508	A mainâ€chain phosphorusâ€containing poly(trimethylene terephthalate) copolyester: synthesis, characterization, and flame retardance. Polymers for Advanced Technologies, 2012, 23, 1276-1282.	3.2	14
509	Aluminum Hydroxymethylphosphinate and Melamine Pyrophosphate: Synergistic Flame Retardance and Smoke Suppression for Glass Fiber Reinforced Polyamide 6. Industrial & Engineering Chemistry Research, 2013, 52, 15613-15620.	3.7	14
510	A novel phosphorus-containing poly(1,4-cyclohexylenedimethylene terephthalate) copolyester: Synthesis, thermal stability, flammability and pyrolysis behavior. Polymer Degradation and Stability, 2014, 108, 12-22.	5.8	14
511	Biobased Thermoplastic Poly(ester urethane) Elastomers Consisting of Poly(butylene succinate) and Poly(propylene succinate). Industrial & Engineering Chemistry Research, 2015, 54, 6258-6268.	3.7	14
512	A facile chemoenzymatic synthesis of amphiphilic miktoarm star copolymers from a sugar core and their potential for anticancer drug delivery. Polymer, 2016, 93, 159-166.	3.8	14
513	High-Efficiency Hydrolysis of Thermosetting Polyester Resins into Porous Functional Materials Using Low-Boiling Aqueous Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 16010-16019.	6.7	14
514	High-fire-safety thermoplastic polyester constructed by novel sulfonate with benzimidazole structure. Science China Materials, 2021, 64, 2067-2080.	6.3	14
515	4D Printing of a Fully Biobased Shape Memory Copolyester <i>via</i> a UV-Assisted FDM Strategy. ACS Sustainable Chemistry and Engineering, 2022, 10, 6304-6312.	6.7	14
516	A confined-etching strategy for intrinsic anisotropic surface wetting patterning. Nature Communications, 2022, 13, .	12.8	14
517	A novel aromatic–aliphatic copolyester consisting of poly(1,4â€dioxanâ€2â€one) and poly(ethyleneâ€ <i>co</i> â€1,6â€hexene terephthalate): Preparation, thermal, and mechanical properties. Journal of Polymer Science Part A, 2010, 48, 2828-2837.	2.3	13
518	Composition dependence of physical properties of biodegradable poly(ethylene succinate) urethane ionenes. RSC Advances, 2014, 4, 54175-54186.	3.6	13
519	Electrostatic wrapping of doxorubicin with curdlan to construct an efficient pH-responsive drug delivery system. Nanotechnology, 2017, 28, 295601.	2.6	13
520	Preparation of polymer nanocomposites with enhanced mechanical properties using hybrid of graphene and partially wrapped multi-wall carbon nanotube as nanofiller. Chinese Chemical Letters, 2017, 28, 201-205.	9.0	13
521	A green and facile way to prepare methylcellulose-based porous polymer electrolytes with high lithium-ion conductivity. Polymer, 2019, 176, 256-263.	3.8	13

522Single-walled carbon nanotubes as adaptable one-dimensional crosslinker to bridge multi-responsive
shape memory network via $\hat{l} \in \hat{a} \in \tilde{l} \in \hat{s}$ stacking. Composites Communications, 2019, 14, 48-54.6.313

#	Article	IF	CITATIONS
523	Thermally induced end-group-capturing as an eco-friendly and general method for enhancing the fire safety of semi-aromatic polyesters. Polymer, 2021, 218, 123430.	3.8	13
524	Synthesis and characterization of poly(p-dioxanone)-based degradable copolymers with enhanced thermal and hydrolytic stabilities. Chinese Chemical Letters, 2022, 33, 2151-2154.	9.0	13
525	Small change, big impact: Simply tailoring the substitution position towards significant improvement of flame retardancy. Composites Part B: Engineering, 2021, 223, 109109.	12.0	13
526	Trinity effect of potassium sulfonate-benzimidozale towards self-intumescent flame-retarded polyester with low fire hazards. Chemical Engineering Journal, 2022, 429, 132121.	12.7	13
527	Recyclable strong and tough polyamide adhesives via noncovalent interactions combined with Energy-Dissipating soft segments. Chemical Engineering Journal, 2022, 446, 137304.	12.7	13
528	A novel phosphorus ontaining copolyester with low melting temperature and high flame retardancy. Polymer International, 2009, 58, 1202-1208.	3.1	12
529	Thermal Degradation and Combustion Behavior of a Modified Intumescent Flame-retardant ABS Composite. Journal of Thermoplastic Composite Materials, 2010, 23, 473-486.	4.2	12
530	A Novel Aromaticâ~'Aliphatic Copolyester of Poly(ethylene- <i>co</i> -diethylene) Tj ETQq0 0 0 rgBT /Overlock 10 & Engineering Chemistry Research, 2010, 49, 9803-9810.	Tf 50 467 3.7	Td (terephtha 12
531	Fuel oil from ABS using a tandem PEC-enhanced denitrogenation–pyrolysis method: Thermal degradation of denitrogenated ABS. Journal of Analytical and Applied Pyrolysis, 2011, 92, 267-272.	5.5	12
532	Thermal, Crystallization Properties, and Micellization Behavior of HEC- <i>g</i> -PPDO Copolymer: Microstructure Parameters Effect. Industrial & Engineering Chemistry Research, 2012, 51, 14037-14046.	3.7	12
533	Improving crystallization and processability of PBS via slight cross-linking. RSC Advances, 2016, 6, 68942-68951.	3.6	12
534	Simultaneously Porous Structure and Chemical Anchor: A Multifunctional Composite by One-Step Mechanochemical Strategy toward High-Performance and Safe Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2018, 10, 41359-41369.	8.0	12
535	Dendritic crystallization and morphology control of random poly(p-dioxanone-co-butylene-co-succinate) copolyesters. European Polymer Journal, 2018, 108, 76-84.	5.4	12
536	Physio- and chemo-dual crosslinking toward thermoand photo-response of azobenzene-containing liquid crystalline polyester. Science China Materials, 2018, 61, 1225-1236.	6.3	12
537	A Surface Diffusion Barrier Strategy toward Water-Resistant Photonic Materials for Accurate Detection of Ethanol. ACS Applied Materials & amp; Interfaces, 2022, 14, 30352-30361.	8.0	12
538	Chain-extension and thermal behaviors of poly(p-dioxanone) with toluene-2,4-diisocyanate. Reactive and Functional Polymers, 2005, 65, 309-315.	4.1	11
539	A novel phosphorusâ€containing thermotropic liquid crystalline poly(esterâ€imide) with high flame retardancy. Polymers for Advanced Technologies, 2009, 20, 378-383.	3.2	11
540	Thermal and Thermo-Oxidative Degradation of Biodegradable Poly(Ester Urethane) Containing Poly(L-Lactic Acid) and Poly(Butylene Succinate) Blocks. Journal of Macromolecular Science - Physics, 2009, 48, 635-649.	1.0	11

#	Article	IF	CITATIONS
541	Synthesis of Poly(p-dioxanone) Catalyzed by Zn L-Lactate under Microwave Irradiation and Its Application in Ibuprofen Delivery. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 927-936.	3.5	11
542	Crystallization and morphology of a polymer blend based on linear PPDO and branched poly(p-dioxanone)–poly(lactic acid) block copolymer with immiscible blocks. Polymer Chemistry, 2012, 3, 2537.	3.9	11
543	Thermal Transition Behavior, Thermal Stability, and Flame Retardancy of Low-Melting-Temperature Copolyester: Comonomer Effect. Industrial & Engineering Chemistry Research, 2013, 52, 4539-4546.	3.7	11
544	Coating Novozyme435 with an ionic liquid: more than just a coating for the efficient ring-opening polymerization of δ-valerolactone. RSC Advances, 2015, 5, 68276-68282.	3.6	11
545	Bamboo (Neosinocalamus affinis)-based thin film, a novel biomass material with high performances. Carbohydrate Polymers, 2015, 119, 167-172.	10.2	11
546	Rheological premonitory of nanoclay morphology on the mechanical characteristics of composite aerogels. Composites Part B: Engineering, 2019, 173, 106889.	12.0	11
547	"Hot-pressing welded―composite membrane for separating oil-in-water emulsion with high structural stability. Composites Part B: Engineering, 2020, 202, 108449.	12.0	11
548	<i>In situ</i> phthalocyanine synthesis chemistry in flames towards molecular fireproof engineering. Chemical Communications, 2020, 56, 9525-9528.	4.1	11
549	Flame-retardant nanocoating towards high-efficiency suppression of smoke and toxic gases for polymer foam. Composites Part A: Applied Science and Manufacturing, 2022, 159, 107021.	7.6	11
550	Effect of Modified Intumescent Flame Retardant via Surfactant/Polyacrylate Latex on Properties of Intumescent Flame Retardant ABS Composites. Journal of Macromolecular Science - Physics, 2008, 47, 1087-1095.	1.0	10
551	A Novel Potential Ecomaterial Based on Poly(<i>p</i> -Dioxanone)/Montmorillonite Nanocomposite With Improved Crystalline, Processing, and Mechanical Properties. Journal of Macromolecular Science - Physics, 2009, 48, 1031-1041.	1.0	10
552	A facile approach to preparation of long-chain-branched poly(p-dioxanone). European Polymer Journal, 2010, 46, 24-33.	5.4	10
553	Cellulose Diacetate-g-poly(p-dioxanone) Co-polymer: Synthesis, Properties and Microsphere Preparation. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 981-999.	3.5	10
554	Main-chain liquid crystalline copolyesters with a phosphorus-containing non-coplanar moiety. Polymer Chemistry, 2013, 4, 329-336.	3.9	10
555	Degradation of nylon 6 to produce a "pseudo―amino acid ionic liquid. Polymer Degradation and Stability, 2014, 109, 171-174.	5.8	10
556	Ligand–metal-drug coordination based micelles for efficient intracellular doxorubicin delivery. RSC Advances, 2015, 5, 47629-47639.	3.6	10
557	Controlling Self-Assembly of Cellulose Nanocrystal to Synergistically Regulate (001) Reactive Facets and Hierarchical Pore Structure of Anatase Nano-TiO ₂ for High Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2019, 7, 1973-1979.	6.7	10
558	Metalâ€phenolic networks: A biobased synergist for EVA/APP composites toward enhanced thermal stability and flame retardancy. Journal of Applied Polymer Science, 2019, 136, 47243.	2.6	10

#	Article	IF	CITATIONS
559	A high-strength and healable shape memory supramolecular polymer based on pyrene-naphthalene diimide complexes. Polymer, 2020, 190, 122228.	3.8	10
560	Rapid Synthesis of Polymer-Grafted Cellulose Nanofiber Nanocomposite via Surface-Initiated Cu(0)-Mediated Reversible Deactivation Radical Polymerization. Macromolecules, 2021, 54, 7409-7420.	4.8	10
561	Recovery and Reutilization of Epoxy Thermoset via Acidic Ion Exchange Resin-Induced Controllable Oxidative Degradation and Subsequent Microspheroidization. ACS Sustainable Chemistry and Engineering, 2022, 10, 5582-5589.	6.7	10
562	Piperazine/Alkene-Containing Phosphoramide Oligomer for the Intumescent Flame Retardation of EPDM Rubber. Polymer Degradation and Stability, 2022, 201, 109990.	5.8	10
563	A multifunctional coating towards superhydrophobicity, flame retardancy and antibacterial performances. Chemical Engineering Journal, 2022, 450, 138031.	12.7	10
564	Sn-containing composite thin films by plasma deposition of tetramethyltin. Thin Solid Films, 2005, 472, 58-63.	1.8	9
565	AlEt3-H2O-H3PO4 catalyzed polymerizations of 1, 4-dioxan-2-one. Polymer Bulletin, 2005, 54, 187-193.	3.3	9
566	Enhanced hydrolytic stability of poly(<i>p</i> â€dioxanone) with polycarbodiimide. Journal of Applied Polymer Science, 2009, 112, 3079-3086.	2.6	9
567	Synthesis of poly (1,4-dioxan-2-one) catalyzed by immobilized lipase CA. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 224-228.	1.8	9
568	Effect of polycarbodiimide on the thermal stability and crystallization of poly(p-dioxanone). Journal of Polymer Research, 2010, 17, 63-70.	2.4	9
569	Novel Semibiobased Copolyester Containing Poly(trimethylene-co-hexamethylene Terephthalate) and Poly(lactic Acid) Segments. Industrial & Engineering Chemistry Research, 2010, 49, 5986-5992.	3.7	9
570	Non-isothermal Crystallization Behaviors of Poly(<i>p</i> -dioxanone) and Poly(<i>p</i> -dioxanone)- <i>b</i> -poly(butylene succinate) Multiblock Copolymer from Amorphous State. Journal of Macromolecular Science - Physics, 2010, 49, 269-285.	1.0	9
571	Biodegradable poly(<i>p</i> â€dioxanone) reinforced and toughened by organoâ€modified vermiculite. Polymers for Advanced Technologies, 2011, 22, 993-1000.	3.2	9
572	Impact behavior and fracture morphology of acrylonitrile–butadiene–styrene resins toughened by linear random styrene–isoprene–butadiene rubber. Journal of Applied Polymer Science, 2011, 121, 2458-2466.	2.6	9
573	Denitrogenation of acrylonitrile–butadiene–styrene copolymers using polyethylene glycol/hydroxides. Polymer Degradation and Stability, 2011, 96, 870-874.	5.8	9
574	Synergistic effects of novolac-based char former with a phosphorus/nitrogen-containing flame retardant in polyamide 6. Chinese Journal of Polymer Science (English Edition), 2012, 30, 72-81.	3.8	9
575	Fennel-like nanoaggregates based on polysaccharide derivatives and their application in drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 113, 501-504.	5.0	9
576	Morphology development of PP/POE blends with high loading of magnesium hydroxide. RSC Advances, 2015, 5, 17967-17975.	3.6	9

#	Article	IF	CITATIONS
577	Synthesis and characterization of a polyurethane ionene/zinc chloride complex with antibacterial properties. RSC Advances, 2015, 5, 12423-12433.	3.6	9
578	Contribution of Hemispheric CaCO ₃ To Improving Crystalline, Physical Properties and Biocompatibility of Poly(<i>p</i> -dioxanone). Industrial & Engineering Chemistry Research, 2015, 54, 6269-6281.	3.7	9
579	Structure, morphology, and properties of LDPE/sepiolite nanofiber nanocomposite. Polymers for Advanced Technologies, 2017, 28, 958-964.	3.2	9
580	Novel Multiblock Poly(ε-caprolactone) Copolyesters Containing <i>D</i> -Glucose Derivatives with Different Bicyclic Structures. ACS Sustainable Chemistry and Engineering, 2017, 5, 7040-7051.	6.7	9
581	Heterogeneous catalysts based on built-in N-heterocyclic carbenes with high removability, recoverability and reusability for ring-opening polymerization of cyclic esters. Polymer Chemistry, 2019, 10, 1526-1536.	3.9	9
582	Ultra-strong mechanical property and force-driven malleability of water-poor hydrogels. Journal of Colloid and Interface Science, 2019, 542, 281-288.	9.4	9
583	Tuning the Pendent Groups of Semiaromatic Polyamides toward High Performance. Macromolecules, 2020, 53, 3504-3513.	4.8	9
584	Eco-friendly and durable flame-retardant coating for cotton fabrics based on dynamic coordination of Ca2+-tannin acid. Progress in Organic Coatings, 2022, 170, 106964.	3.9	9
585	Polyamide 6 with a flame retardant encapsulated by polyamide 66: Flame retardation, thermo-decomposition and the potential mechanism. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0	.78 %.% 14 r	gB T 8/Overlock
586	Thermodynamics and kinetics of Novozym 435 catalyzed ring-opening polymerization of 1,4-dioxan-2-one. Journal of Molecular Catalysis B: Enzymatic, 2013, 96, 40-45.	1.8	8
587	Dandelion-like CaCO ₃ microspheres: ionic liquid-assisted biomimetic synthesis and in situ fabrication of poly(ε-caprolactone)/CaCO ₃ composites with high performance. RSC Advances, 2014, 4, 53380-53386.	3.6	8
588	Crystallization induced micellization of poly(p-dioxanone)-block-polyethylene glycol diblock copolymer functionalized with pyrene moiety. Chinese Chemical Letters, 2014, 25, 1311-1317.	9.0	8
589	Main-chain liquid crystalline ionomers with a nonplanar ionic segment. RSC Advances, 2015, 5, 48541-48550.	3.6	8
590	One-step enzymatic synthesis of poly(p-dioxanone-co-butylene-co-succinate) copolyesters with well-defined structure and enhanced degradability. Polymer, 2017, 111, 107-114.	3.8	8
591	Multiscale shape-memory effects in a dynamic polymer network for synchronous changes in color and shape. Applied Materials Today, 2022, 26, 101276.	4.3	8
592	STUDY ON THE EFFECTS OF TLCP ON PYROLYSIS OF PET AND ITS RETARDANT MECHANISM. Chinese Journal of Polymer Science (English Edition), 2008, 26, 111.	3.8	7
593	The influence of the surface character of the clays on the properties of poly(<i>p</i> â€dioxanone)/fibrous clay nanocomposites. Journal of Applied Polymer Science, 2012, 125, E247.	2.6	7
594	Preparation of Core–Shell Nanofibers with Selectively Localized CNTs from Shish Kebabâ€like Hierarchical Composite Micelles. Macromolecular Rapid Communications, 2014, 35, 1450-1457.	3.9	7

#	Article	IF	CITATIONS
595	Targeted Copolymerization in Amorphous Regions for Constructing Crystallizable Functionalized Copolymers. Macromolecules, 2021, 54, 4412-4422.	4.8	7
596	A cellulose nanocrystal templating approach to synthesize size-controlled gold nanoparticles with high catalytic activity. International Journal of Biological Macromolecules, 2022, 209, 464-471.	7.5	7
597	Structural and electronic engineering towards high-efficiency metal-free electrocatalysts for boosting oxygen evolution. Chemical Engineering Journal, 2022, 450, 138063.	12.7	7
598	Synthesis of block copolymers of poly(p-dioxanone) block poly(tetrahydrofuran). Polymer Bulletin, 2006, 57, 151-156.	3.3	6
599	Block phosphorus-containing poly(trimethylene terephthalate) copolyester via solid-state polymerization: Reaction kinetics and sequential distribution. Polymer, 2012, 53, 3520-3528.	3.8	6
600	Hydrolytic degradation behaviors of poly(p-dioxanone) in ambient environments. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1678-1689.	3.8	6
601	Construction of conductive percolation network with high efficiency in composite film via a novel sparsely partial wrapping strategy. Composites Science and Technology, 2016, 136, 39-45.	7.8	6
602	Thiazolium as Singleâ€Group Bifunctional Catalyst for Selectively Bulk Melt ROP of Cyclic Esters. ChemCatChem, 2019, 11, 3388-3392.	3.7	6
603	NIR light manipulated "paper art―for customizing devices with sophisticated structure from DA-epoxy/graphene composites. Composites Part B: Engineering, 2019, 177, 107369.	12.0	6
604	Photo-cross-linking of Anthracene as a Versatile Strategy to Design Shape Memory Polymers. Materials Today: Proceedings, 2019, 16, 1524-1530.	1.8	6
605	Fabrication of Shapeâ€Memory Aerogel Based on Chitosan/Poly(ethylene glycol) Diacrylate Semiâ€Interpenetrating Networks via a Facile and Ecoâ€Friendly Strategy. Macromolecular Materials and Engineering, 2019, 304, 1900169.	3.6	6
606	Development of polylactic acid-based materials with highly and balanced mechanical performances via incorporating a furan ring-containing unsaturated copolyester. Composites Communications, 2021, 23, 100543.	6.3	6
607	Intelligently Thermoresponsive Ionic Liquid toward Molecular Firefighting and Thermal Energy Management. ACS Applied Materials & Interfaces, 2021, 13, 15680-15689.	8.0	6
608	Microwave Assisted Radical Grafting of Maleic Anhydride onto Polyethylene in Solution. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 739-745.	2.2	5
609	Nonisothermal Crystallization Behaviors of Flame-Retardant Copolyester/Montmorillonite Nanocomposites. Journal of Macromolecular Science - Physics, 2009, 48, 927-940.	1.0	5
610	Effect of an Ultrahigh Rubber ABS Impact Modifier Resin on Mechanical Properties of Intumescent Flame-Retardant ABS Composites. Journal of Macromolecular Science - Physics, 2010, 49, 542-551.	1.0	5
611	PPDO-PU/Montmorillonite Nanocomposites Prepared by Chain-Extending Reaction: Thermal Stability, Mechanical Performance and Rheological Behavior. Soft Materials, 2011, 9, 393-408.	1.7	5
612	A Biobased Blend of Cellulose Diacetate with Starch. Journal of Polymers and the Environment, 2012, 20, 1103-1111.	5.0	5

#	Article	IF	CITATIONS
613	A Self-supporting, Surface Carbonized Filter Paper Membrane for Efficient Water-in-Oil Emulsion Separation. Chinese Journal of Polymer Science (English Edition), 2021, 39, 181-188.	3.8	5
614	Simultaneous toughening and strengthening of chitin-based composites via tensile-induced orientation and hydrogen bond reconstruction. Carbohydrate Polymers, 2022, 275, 118713.	10.2	5
615	Flame-retardation of thermoplastic polyesters via cyclotetramerization from phthalonitrile to phthalocyanine: Pyrolysis processes and fire behaviour. Polymer Degradation and Stability, 2022, 200, 109939.	5.8	5
616	Microwave-Assisted Single-Step Synthesis of Poly(L-lactic acid)-poly(ethylene glycol) Copolymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 631-635.	2.2	4
617	Effects of Boric Acid on Flame Retardancy of Intumescent Flame-Retardant Polypropylene Systems Containing a Caged Bicyclic Phosphate. ACS Symposium Series, 2009, , 225-248.	0.5	4
618	Poly(oleic diacid-co-glycerol): Comparison of Polymer Structure Resulting from Chemical and Lipase Catalysis. ACS Symposium Series, 2012, , 111-129.	0.5	4
619	Degradation of polylactide using basic ionic liquid imidazolium acetates. Chemical Papers, 2014, 68, .	2.2	4
620	Thermal transition behaviors, solubility, and mechanical properties of wholly aromatic para-, meta-poly(ether-amide)s: effect on numbers of para-aryl ether linkages. RSC Advances, 2016, 6, 84284-84293.	3.6	4
621	A titanium dioxide–carbon nanotube hybrid to simultaneously achieve the mechanical enhancement of natural rubber and its stability under extreme frictional conditions. Materials Advances, 2021, 2, 2408-2418.	5.4	4
622	Reduction of PVA Aerogel Flammability by Incorporation of an Alkaline Catalyst. Gels, 2021, 7, 57.	4.5	4
623	Benzaldehyde decorated octadecylamine for tailor-made molecular firefighting and efficient thermal energy management. Chemical Engineering Journal, 2022, 431, 133480.	12.7	4
624	Thermal Degradation and Fire Behaviors of Glass Fiber Reinforced PA6 Flame Retarded by Combination of Aluminum Hypophosphite with Melamine Derivatives. ACS Symposium Series, 2012, , 167-182.	0.5	3
625	The influence of coexisted monomer on thermal, mechanical, and hydrolytic properties of poly(<i>p</i> â€dioxanone). Journal of Applied Polymer Science, 2016, 133, .	2.6	3
626	SYNTHESIS AND CHARACTERIZATION OF A FLAME-RETARDANT AND ANTI-DRIPPING COPOLYESTER. Acta Polymerica Sinica, 2012, 012, 1042-1046.	0.0	3
627	Efficient Water Harvesting Enabled by Porous Architecture-Containing Hybrid Surfaces. Industrial & Engineering Chemistry Research, 0, , .	3.7	3
628	Boron trifluoride-catalyzed degradation of poly-É›-caprolactone at ambient temperature. Polymer Degradation and Stability, 2009, 94, 1515-1519.	5.8	2
629	Synthesis and Anticoccidial Activity of ethyl 6-substitutedbenzyloxy-7-alkoxy-4-hydroxyquinoline-3-carboxylates. Journal of Chemical Research, 2009, 2009, 252-254.	1.3	2
630	Characterization of Electrospun Poly(<i>p</i> -dioxanone) and Poly(<i>p</i> -dioxanone)/Clay Nanocomposite Fibers. Journal of Nanoscience and Nanotechnology, 2011, 11, 1609-1612.	0.9	2

#	Article	IF	CITATIONS
631	Preparation of UV-crosslinked biodegradable poly(p -dioxanone)/poly(ethylene glycol) films. Journal of Controlled Release, 2011, 152, e239-e240.	9.9	2
632	Rapid synthesis of poly(<i>p</i> â€dioxanone)/montmorillonite nanocomposites under microwave irradiation. Journal of Applied Polymer Science, 2012, 125, 3463-3468.	2.6	2
633	Thermal Degradation, Crystallization, and Rheological Behavior of Biodegradable Poly(<i>p</i> -dioxanone)/Synthetic Hectorite Nanocomposites. Soft Materials, 2013, 11, 98-107.	1.7	2
634	Enhanced degradation stability of poly(pâ€dioxanone) under different temperature and humidity with bisâ€(2,6â€diisopropylphenyl) carbodiimide. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
635	Regulating the crystallizing and rheological behaviors of poly(butylene succinate) by incorporating novel macromolecular ionomers. Journal of Applied Polymer Science, 2018, 135, 45545.	2.6	2
636	Design of Healable Shape-Memory Materials from Dynamic Interactions. Materials Today: Proceedings, 2019, 16, 1502-1506.	1.8	2
637	Self-complementary hydrogen-bond interactions of guanosine: a hub for constructing supra-amphiphilic polymers with controlled molecular structure and aggregate morphology. Soft Matter, 2019, 15, 102-108.	2.7	2
638	Fire‣afe Polyesters Enabled by Endâ€Group Capturing Chemistry. Angewandte Chemie, 2019, 131, 9286-9291.	2.0	2
639	SYNTHESIS AND CHARACTERIZATION OF PHOSPHORUS-CONTAINING LIQUID CRYSTALLINE COPOLYESTERS BASED ON BIPHENYL-4,4â€2-DICARBOXYLIC ACID. Acta Polymerica Sinica, 2012, 012, 1177-1182.	0.0	2
640	2010 Symposium on Flameâ€Retardant Materials & Technologies (ISFRMT2010), Chengdu, China, 2010. Polymers for Advanced Technologies, 2011, 22, 1083-1084.	3.2	1
641	High fire-safety phosphorus-containing polyethylene terephthalate with well-balanced comprehensive performances by reactive blending with liquid crystalline copolyester. High Performance Polymers, 0, , 095400832110288.	1.8	1
642	A biodegradable copolymer from coupling poly(pdioxanone) with poly(ethylene succinate) via toluene-2,4- diisocyanate. E-Polymers, 2009, 9, .	3.0	0
643	Notice of Retraction: How to learn polymer science well for university students whose major is not polymer science. , 2010, , .		0
644	Poly(ethylene imine)â€Triggered Morphological Change of Anisotropic Micelles from Direct Aqueous Selfâ€Assembly of an Amphiphilic Diblock Copolymer. Macromolecular Chemistry and Physics, 2016, 217, 2165-2171.	2.2	0
645	Special topic on bio-based and biodegradable polymers. Science China Chemistry, 2016, 59, 1353-1354.	8.2	0
646	Orthogonal construction of dual dynamic covalent linkages toward an "AND―logic-gate acid-/salt-responsive block copolymer. Polymer, 2018, 159, 32-38.	3.8	0
647	Highly Flame-Retardant Liquid Crystalline Polymers. Polymers and Polymeric Composites, 2020, , 549-575.	0.6	0

648 Highly Flame-Retardant Liquid Crystalline Polymers. , 2019, , 1-27.