
Fernando Galvez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12140195/publications.pdf Version: 2024-02-01

FEDNANDO CALVEZ

#	Article	IF	CITATIONS
1	Transgenerational effects of parental crude oil exposure on the morphology of adult Fundulus grandis. Aquatic Toxicology, 2022, , 106209.	4.0	2
2	Increased polyamine levels and maintenance of Î ³ -aminobutyric acid (Gaba) homeostasis in the gills is indicative of osmotic plasticity in killifish. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 257, 110969.	1.8	2
3	Physiological and Genomic Mechanisms of Resilience to Multiple Environmental Stressors. , 2018, , 179-201.		4
4	Biomarkers of Aryl-hydrocarbon Receptor Activity in Gulf Killifish (Fundulus grandis) From Northern Gulf of Mexico Marshes Following the Deepwater Horizon Oil Spill. Archives of Environmental Contamination and Toxicology, 2017, 73, 63-75.	4.1	16
5	The potential role of polyamines in gill epithelial remodeling during extreme hypoosmotic challenges in the Gulf killifish, Fundulus grandis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 194-195, 39-50.	1.6	9
6	ls Exposure to Macondo Oil Reflected in the Otolith Chemistry of Marsh-Resident Fish?. PLoS ONE, 2016, 11, e0162699.	2.5	14
7	Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish <i>Fundulus heteroclitus</i> . Journal of Experimental Biology, 2015, 218, 1212-22.	1.7	62
8	Integrating Organismal and Population Responses of Estuarine Fishes in Macondo Spill Research. BioScience, 2014, 64, 778-788.	4.9	98
9	Natural Selection Canalizes Expression Variation of Environmentally Induced Plasticity-Enabling Genes. Molecular Biology and Evolution, 2014, 31, 3002-3015.	8.9	48
10	Response to Comment on "Multi-Tissue Molecular, Genomic, and Developmental Effects of the Deepwater Horizon Oil Spill on Resident Gulf Killifish (<i>Fundulus grandis</i>)â€: Environmental Science & Technology, 2014, 48, 7679-7680.	10.0	13
11	Multitissue Molecular, Genomic, and Developmental Effects of the Deepwater Horizon Oil Spill on Resident Gulf Killifish (Fundulus grandis). Environmental Science & Technology, 2013, 47, 5074-5082.	10.0	276
12	Common functional targets of adaptive micro―and macroâ€evolutionary divergence in killifish. Molecular Ecology, 2013, 22, 3780-3796.	3.9	40
13	Genomic and physiological footprint of the <i>Deepwater Horizon</i> oil spill on resident marsh fishes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20298-20302.	7.1	226
14	Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (<i>Fundulus heteroclitus</i>) gill. Journal of Experimental Biology, 2012, 215, 1293-1305.	1.7	97
15	Embryonic development and metabolic costs in Gulf killifish Fundulus grandis exposed to varying environmental salinities. Fish Physiology and Biochemistry, 2012, 38, 1071-1082.	2.3	15
16	Mechanism of sodium uptake in PNA negative MR cells from rainbow trout, Oncorhynchus mykiss as revealed by silver and copper inhibition. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 159, 234-241.	1.8	14
17	Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish. Journal of Heredity, 2011, 102, 499-511.	2.4	95
18	Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6193-6198.	7.1	189

#	Article	IF	CITATIONS
19	The distribution kinetics of waterborne silver-110m in juvenile rainbow trout. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 131, 367-378.	2.6	6
20	The biotic ligand model: a historical overview. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 133, 3-35.	2.6	355
21	DNA microarrays and toxicogenomics: applications for ecotoxicology?. Biotechnology Advances, 2002, 20, 391-419.	11.7	97
22	The physiological effects of a biologically incorporated silver diet on rainbow trout (Oncorhynchus) Tj ETQq0 0 0	rgBT /Ovei 4.0	lock 10 Tf 5
23	A Physiologically Based Biotic Ligand Model for Predicting the Acute Toxicity of Waterborne Silver to Rainbow Trout in Freshwaters. Environmental Science & Technology, 2000, 34, 4199-4207.	10.0	120
24	Effects of chloride, calcium, and dissolved organic carbon on silver toxicity: Comparison between rainbow trout and fathead minnows. Environmental Toxicology and Chemistry, 1999, 18, 56-62.	4.3	96
25	Physiological effects of dietary silver sulfide exposure in rainbow trout. Environmental Toxicology and Chemistry, 1999, 18, 84-88.	4.3	28
26	EFFECTS OF CHLORIDE, CALCIUM, AND DISSOLVED ORGANIC CARBON ON SILVER TOXICITY: COMPARISON BETWEEN RAINBOW TROUT AND FATHEAD MINNOWS. Environmental Toxicology and Chemistry, 1999, 18, 56.	4.3	2
27	Physiological Responses of Juvenile Rainbow Trout to Chronic Low Level Exposures of Waterborne Silver. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1998, 119, 131-137.	0.5	10
28	The relative importance of water hardness and chloride levels in modifying the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 1997, 16, 2363-2368.	4.3	63
29	THE RELATIVE IMPORTANCE OF WATER HARDNESS AND CHLORIDE LEVELS IN MODIFYING THE ACUTE TOXICITY OF SILVER TO RAINBOW TROUT (ONCORHYNCHUS MYKISS). Environmental Toxicology and Chemistry, 1997, 16, 2363.	4.3	11
30	The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquatic Toxicology, 1996, 35, 93-109.	4.0	189
31	The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 2. The effects of silver thiosulfate. Aquatic Toxicology, 1996, 35, 111-125.	4.0	50
32	Toxicity, silver accumulation and metallothionein induction in freshwater rainbow trout during exposure to different silver salts. Environmental Toxicology and Chemistry, 1996, 15, 1102-1108.	4.3	159

33TOXICITY, SILVER ACCUMULATION AND METALLOTHIONEIN INDUCTION IN FRESHWATER RAINBOW TROUT
DURING EXPOSURE TO DIFFERENT SILVER SALTS. Environmental Toxicology and Chemistry, 1996, 15, 1102.4.36