Teresa Ledwina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12138867/publications.pdf

Version: 2024-02-01

687363 526287 30 755 13 27 citations h-index g-index papers 32 32 32 176 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Data-Driven Version of Neyman's Smooth Test of Fit. Journal of the American Statistical Association, 1994, 89, 1000-1005.	3.1	159
2	Consistency and Monte Carlo Simulation of a Data Driven Version of Smooth Goodness-of-Fit Tests. Annals of Statistics, 1995, 23, 1594.	2.6	76
3	Asymptotic optimality of data-driven Neyman's tests for uniformity. Annals of Statistics, 1996, 24, 1982.	2.6	65
4	Data-Driven Version of Neyman's Smooth Test of Fit. Journal of the American Statistical Association, 1994, 89, 1000.	3.1	58
5	Data-Driven Smooth Tests When the Hypothesis is Composite. Journal of the American Statistical Association, 1997, 92, 1094-1104.	3.1	57
6	Data-Driven Rank Tests for Independence. Journal of the American Statistical Association, 1999, 94, 285-301.	3.1	54
7	Data driven smooth tests for composite hypotheses. Annals of Statistics, 1997, 25, .	2.6	47
8	Towards data driven selection of a penalty function for data driven Neyman tests. Linear Algebra and Its Applications, 2006, 417, 124-133.	0.9	37
9	Data Driven Rank Test for Two-Sample Problem. Scandinavian Journal of Statistics, 2000, 27, 281-297.	1.4	30
10	Data-Driven Smooth Tests When the Hypothesis Is Composite. Journal of the American Statistical Association, 1997, 92, 1094.	3.1	24
11	Intermediate Approach to Comparison of Some Goodness-of-Fit Tests. Annals of the Institute of Statistical Mathematics, 2001, 53, 810-834.	0.8	19
12	Data-Driven Rank Tests for Independence. Journal of the American Statistical Association, 1999, 94, 285.	3.1	18
13	Data driven rank test for the change point problem. Metrika, 2008, 68, 1-15.	0.8	15
14	Nonparametric tests for stochastic ordering. Test, 2012, 21, 730-756.	1.1	14
15	On netman-type smooth tests of fit. Statistics, 1990, 21, 549-568.	0.6	12
16	Efficient and adaptive nonparametric test for the two-sample problem. Annals of Statistics, 2003, 31, .	2.6	12
17	Vanishing shortcoming of data driven neyman's tests. , 1998, , 811-829.		11
18	Twoâ€Sample Test Against Oneâ€Sided Alternatives. Scandinavian Journal of Statistics, 2012, 39, 358-381.	1.4	10

#	Article	IF	CITATIONS
19	Intermediate efficiency of some max-type statistics. Journal of Statistical Planning and Inference, 2006, 136, 2918-2935.	0.6	7
20	Validation of positive quadrant dependence. Insurance: Mathematics and Economics, 2014, 56, 38-47.	1.2	7
21	On consistent minimax distinguishability and intermediate efficiency of Cramér–von Mises test. Journal of Statistical Planning and Inference, 2004, 124, 453-474.	0.6	5
22	Intermediate efficiency in nonparametric testing problems with an application to some weighted statistics. ESAIM - Probability and Statistics, 2019, 23, 697-738.	0.5	4
23	Admissible tests for exponential families with finite support ² . Statistics, 1978, 9, 105-118.	0.1	3
24	On Charlier polynomials in testing Poissonity. Communications in Statistics Part B: Simulation and Computation, 2017, 46, 1918-1932.	1.2	3
25	Detection of non-Gaussianity. Journal of Statistical Computation and Simulation, 2015, 85, 3480-3497.	1.2	2
26	Validation of association. Insurance: Mathematics and Economics, 2020, 91, 55-67.	1.2	2
27	Vanishing shortcoming and asymptotic relative efficiency. Annals of Statistics, 2000, 28, .	2.6	2
28	Admissible tests for contingency tables and poisson's distributions, II. Statistics, 1978, 9, 119-125.	0.1	1
29	Intermediate efficiency of some weighted goodness-of-fit statistics. Journal of Nonparametric Statistics, 2020, 32, 667-703.	0.9	1
30	Robust test of independence of two random variables. Statistics, 1983, 14, 251-256.	0.1	0