Momoko Horikoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12138542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 2016, 533, 539-542.	27.8	1,204
2	Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 2014, 46, 234-244.	21.4	959
3	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	27.8	952
4	Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nature Genetics, 2012, 44, 991-1005.	21.4	746
5	SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nature Genetics, 2008, 40, 1098-1102.	21.4	641
6	Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nature Genetics, 2015, 47, 1449-1456.	21.4	529
7	Genome-wide associations for birth weight and correlations with adult disease. Nature, 2016, 538, 248-252.	27.8	406
8	Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nature Genetics, 2019, 51, 804-814.	21.4	402
9	The trans-ancestral genomic architecture of glycemic traits. Nature Genetics, 2021, 53, 840-860.	21.4	341
10	Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes. Diabetes, 2011, 60, 2624-2634.	0.6	335
11	The impact of low-frequency and rare variants on lipid levels. Nature Genetics, 2015, 47, 589-597.	21.4	310
12	New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nature Genetics, 2013, 45, 76-82.	21.4	293
13	Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature, 2020, 582, 240-245.	27.8	282
14	Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Human Molecular Genetics, 2016, 25, 389-403.	2.9	275
15	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	21.4	250
16	A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nature Genetics, 2010, 42, 864-868.	21.4	245
17	Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight. JAMA - Journal of the American Medical Association, 2016, 315, 1129.	7.4	220
18	Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Human Molecular Genetics, 2017, 26, 3639-3650.	2.9	170

Момоко Ногікозні

#	Article	IF	CITATIONS
19	Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nature Communications, 2017, 8, 14977.	12.8	169
20	Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nature Genetics, 2019, 51, 379-386.	21.4	164
21	Genome-wide association study identifies three novel loci for type 2 diabetes. Human Molecular Genetics, 2014, 23, 239-246.	2.9	158
22	Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Human Molecular Genetics, 2018, 27, 742-756.	2.9	156
23	Expression-based genome-wide association study links the receptor <i>CD44</i> in adipose tissue with type 2 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7049-7054.	7.1	144
24	Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nature Genetics, 2018, 50, 572-580.	21.4	143
25	Genetic variants linked to education predict longevity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13366-13371.	7.1	110
26	A novel common variant in DCST2 is associated with length in early life and height in adulthood. Human Molecular Genetics, 2015, 24, 1155-1168.	2.9	109
27	Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nature Communications, 2015, 6, 8658.	12.8	108
28	A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. Human Molecular Genetics, 2012, 21, 3042-3049.	2.9	99
29	Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genetics, 2020, 16, e1008718.	3.5	95
30	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.	12.8	87
31	Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances. Human Molecular Genetics, 2013, 22, 3807-3817.	2.9	84
32	Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS Genetics, 2015, 11, e1005230.	3.5	77
33	A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Human Molecular Genetics, 2019, 28, 3327-3338.	2.9	76
34	A Polymorphism in the AMPKÂ2 Subunit Gene Is Associated With Insulin Resistance and Type 2 Diabetes in the Japanese Population. Diabetes, 2006, 55, 919-923.	0.6	51
35	Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nature Communications, 2020, 11, 3175.	12.8	34
36	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	5.3	31

Момоко Ногікозні

#	Article	IF	CITATIONS
37	Variations with modest effects have an important role in the genetic background of type 2 diabetes and diabetes-related traits. Journal of Human Genetics, 2012, 57, 776-779.	2.3	29
38	How Can Genetic Studies Help Us to Understand Links Between Birth Weight and Type 2 Diabetes?. Current Diabetes Reports, 2017, 17, 22.	4.2	28
39	Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Human Molecular Genetics, 2016, 25, 2070-2081.	2.9	21
40	Associations of variations in the MRF2/ARID5B gene with susceptibility to type 2 diabetes in the Japanese population. Journal of Human Genetics, 2012, 57, 727-733.	2.3	16
41	Genome-wide association studies identify two novel loci conferring susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. Human Molecular Genetics, 2021, 30, 716-726.	2.9	13
42	Association Between Genetic Risk and Development of Type 2 Diabetes in a General Japanese Population: The Hisayama Study. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3213-3222.	3.6	12
43	Genetic Variations of Mrf-2/Arid5b Confer Risk of Coronary Atherosclerosis in the Japanese Population. International Heart Journal, 2008, 49, 313-327.	1.0	8
44	Structural basis of ethnic-specific variants of PAX4 associated with type 2 diabetes. Human Genome Variation, 2021, 8, 25.	0.7	5
45	Genome-Wide Association Study for Type 2 Diabetes. , 2019, , 49-86.		2