
Päivi Ã-stling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12138416/publications.pdf Version: 2024-02-01

DÃMI A-STUNC

#	Article	IF	CITATIONS
1	Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines. Nature Communications, 2022, 13, 1691.	12.8	20
2	Application of precision medicine in clinical routine in haematology—Challenges and opportunities. Journal of Internal Medicine, 2022, 292, 243-261.	6.0	12
3	The transcriptomeâ€wide landscape of molecular subtypeâ€specific <scp>mRNA</scp> expression profiles in acute myeloid leukemia. American Journal of Hematology, 2021, 96, 580-588.	4.1	9
4	MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia. Cancer Research, 2021, 81, 5733-5744.	0.9	15
5	ALDH1A1â€related stemness in highâ€grade serous ovarian cancer is a negative prognostic indicator but potentially targetable by EGFR/mTORâ€PI3K/aurora kinase inhibitors. Journal of Pathology, 2020, 250, 159-169.	4.5	37
6	Breeze: an integrated quality control and data analysis application for high-throughput drug screening. Bioinformatics, 2020, 36, 3602-3604.	4.1	68
7	Clonal heterogeneity influences drug responsiveness in renal cancer assessed by <i>ex vivo</i> drug testing of multiple patientâ€derived cancer cells. International Journal of Cancer, 2019, 144, 1356-1366.	5.1	29
8	FGFR4 phosphorylates MST1 to confer breast cancer cells resistance to MST1/2-dependent apoptosis. Cell Death and Differentiation, 2019, 26, 2577-2593.	11.2	38
9	Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas. British Journal of Cancer, 2019, 120, 435-443.	6.4	24
10	High-Throughput Functional Ex-Vivo Drug Testing and Multi-Omics Profiling in Patients with Acute Myeloid Leukemia. Blood, 2019, 134, 4641-4641.	1.4	1
11	Comprehensive Drug Testing of Patient-derived Conditionally Reprogrammed Cells from Castration-resistant Prostate Cancer. European Urology, 2017, 71, 319-327.	1.9	74
12	Consistency in drug response profiling. Nature, 2016, 540, E5-E6.	27.8	76
13	Screening out irrelevant cell-based models of disease. Nature Reviews Drug Discovery, 2016, 15, 751-769.	46.4	402
14	Accurate Morphology Preserving Segmentation of Overlapping Cells based on Active Contours. Scientific Reports, 2016, 6, 32412.	3.3	60
15	Systematic Identification of MicroRNAs That Impact on Proliferation of Prostate Cancer Cells and Display Changed Expression in Tumor Tissue. European Urology, 2016, 69, 1120-1128.	1.9	53
16	Impact of normalization methods on high-throughput screening data with high hit rates and drug testing with dose–response data. Bioinformatics, 2015, 31, 3815-3821.	4.1	31
17	miR-183 in Prostate Cancer Cells Positively Regulates Synthesis and Serum Levels of Prostate-specific Antigen. European Urology, 2015, 68, 581-588.	1.9	35
18	MicroRNAâ€135b regulates ERα, AR and HIF1AN and affects breast and prostate cancer cell growth. Molecular Oncology, 2015, 9, 1287-1300.	4.6	45

PÃ**¤**/I Ã-STLING

#	Article	IF	CITATIONS
19	Systematic Analysis of MicroRNAs Targeting the Androgen Receptor in Prostate Cancer Cells. Cancer Research, 2011, 71, 1956-1967.	0.9	244
20	Heat Shock Factor 2 (HSF2) Contributes to Inducible Expression of hsp Genes through Interplay with HSF1. Journal of Biological Chemistry, 2007, 282, 7077-7086.	3.4	192
21	Role of heat-shock factor 2 in cerebral cortex formation and as a regulatorof p35 expression. Genes and Development, 2006, 20, 836-847.	5.9	85