Eduardo Menendez Proupin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1213674/publications.pdf

Version: 2024-02-01

73 papers 1,594 citations

20 h-index 315739 38 g-index

75 all docs

75 docs citations

75 times ranked 2564 citing authors

#	ARTICLE sistent relativistic band structure of the < mml:math	IF	CITATIONS
1	xmins:mmi="nttp://www.w3.org/1998/Niath/Ni	3.2	245
2	Optical vibrons in CdSe dots and dispersion relation of the bulk material. Physical Review B, 1998, 57, 4664-4669.	3.2	213
3	Electronic properties of bulkl̂³â°'Al2O3. Physical Review B, 2005, 72, .	3.2	103
4	Optical, Electronic, and Magnetic Engineering of $\hat{a}\ddot{y}$. 111 $\hat{a}\ddot{y}$ © Layered Halide Perovskites. Chemistry of Materials, 2018, 30, 5315-5321.	6.7	69
5	Computer simulation of elastic constants of hydroxyapatite and fluorapatite. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1011-1020.	3.1	68
6	Chemical Diversity in Lead-Free, Layered Double Perovskites: A Combined Experimental and Computational Approach. Chemistry of Materials, 2020, 32, 424-429.	6.7	52
7	Vibrational Resonant Raman Scattering in Spherical Quantum Dots: Exciton Effects. Physica Status Solidi (B): Basic Research, 1997, 199, 81-94.	1.5	46
8	Evolution of the doping regimes in the Al-doped SnO ₂ nanoparticles prepared by a polymer precursor method. Journal of Physics Condensed Matter, 2015, 27, 095301.	1.8	44
9	Multiphonon resonant Raman scattering in nanocrystals. Physical Review B, 2000, 62, 11006-11016.	3.2	42
10	Nitrogen/gold codoping of the TiO2(101) anatase surface. A theoretical study based on DFT calculations. Physical Chemistry Chemical Physics, 2011, 13, 11340.	2.8	38
11	Electronic structure of crystalline binary and ternaryCdâ^'Teâ^'Ocompounds. Physical Review B, 2004, 70, .	3.2	37
12	Electric-field and exciton structure in CdSe nanocrystals. Physical Review B, 2004, 69, .	3.2	36
13	<i>Ab initio</i> calculations of elastic properties of compressed Pt. Physical Review B, 2007, 76, .	3.2	35
14	Nonhydrogenic exciton spectrum in perovskite CH ₃ NH ₃ PbI ₃ . Physica Status Solidi - Rapid Research Letters, 2015, 9, 559-563.	2.4	34
15	Elastic properties of the bcc structure of bismuth at high pressure. Journal of Applied Physics, 2006, 99, 103504.	2.5	28
16	Modeling of Thermal Effect on the Electronic Properties of Photovoltaic Perovskite CH ₃ NH ₃ Pbl ₃ : The Case of Tetragonal Phase. Journal of Physical Chemistry C, 2016, 120, 7976-7986.	3.1	25
17	Resonant Raman scattering in self-assembled quantum dots. Physical Review B, 1999, 60, 16747-16757.	3.2	22
18	Strength of polycrystalline coarse-grained platinum to 330GPa and of nanocrystalline platinum to 70GPa from high-pressure x-ray diffraction data. Journal of Applied Physics, 2008, 103, .	2.5	22

#	Article	IF	CITATIONS
19	Atomistic study of vibrational properties of Î ³ -Al2O3. Journal of Materials Science, 2010, 45, 5094-5100.	3.7	22
20	Electronic structure of CdTe using GGA+USIC. Physica B: Condensed Matter, 2014, 452, 119-123.	2.7	21
21	Experimental evidence of compositional mixture in CdTeO films grown by radio-frequency sputtering. Journal of Applied Physics, 1999, 86, 4688-4690.	2.5	19
22	Sn-doped CdTe as promising intermediate-band photovoltaic material. Journal Physics D: Applied Physics, 2017, 50, 035501.	2.8	17
23	Quantitative local environment characterization in amorphous oxides. Physical Review B, 2010, 81, .	3.2	16
24	Atomic-Scale Model and Electronic Structure of Cu2O/CH3NH3PbI3 Interfaces in Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44648-44657.	8.0	16
25	Electronic excitations of C60 aggregates. Physical Chemistry Chemical Physics, 2012, 14, 13058.	2.8	15
26	Resonant hyper-Raman scattering in spherical quantum dots. Physical Review B, 1999, 60, 5513-5522.	3.2	14
27	Computer simulation study of amorphous compounds: structural and vibrational properties. Journal of Materials Science, 2010, 45, 5124-5134.	3.7	14
28	The absorption spectrum of C60 in n-hexane solution revisited: Fitted experiment and TDDFT/PCM calculations. Chemical Physics Letters, 2014, 593, 72-76.	2.6	14
29	Self-compensation in phosphorus-doped CdTe. Physical Review B, 2017, 96, .	3.2	13
30	Influence of chromium hyperdoping on the electronic structure of CH3NH3PbI3 perovskite: a first-principles insight. Scientific Reports, 2018, 8, 2511.	3.3	13
31	Accuracy of the Heyd-Scuseria-Ernzerhof hybrid functional to describe many-electron interactions and charge localization in semiconductors. Physical Review B, 2018, 98, .	3.2	13
32	Self-compensation in chlorine-doped CdTe. Scientific Reports, 2019, 9, 9194.	3.3	13
33	Characterization of spin-state tuning in thermally annealed semiconductor quantum dots. Physical Review B, 2010, 82, .	3.2	12
34	First-principles DFT +GW study of the Te antisite in CdTe. Computational Materials Science, 2016, 125, 176-182.	3.0	12
35	Paramagnetic shift in thermally annealed CdxZn1â°'xSe quantum dots. New Journal of Physics, 2012, 14, 043038.	2.9	11
36	Tellurium vacancy in cadmium telluride revisited: Size effects in the electronic properties. Physica Status Solidi (B): Basic Research, 2015, 252, 2649-2656.	1.5	11

#	Article	IF	CITATIONS
37	Ferroelectric Domains May Lead to Two-Dimensional Confinement of Holes, but not of Electrons, in CH ₃ NH ₃ Pbl ₃ Perovskite. Journal of Physical Chemistry C, 2017, 121, 26698-26705.	3.1	11
38	Approximate quantum mechanical method for describing excitations and related properties of finite single-walled carbon nanotubes. Physical Review B, 2010, 81, .	3.2	9
39	First-principles <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>DFT</mml:mi><mml:mo>+<td>:mଊℷ2:mm</td><td>nl:mø>G</td></mml:mo></mml:mrow></mml:math>	:m ଊ ℷ2:mm	nl:mø>G
40	Methodological Issues in First-Principle Calculations of CH ₃ NH ₃ Pbl ₃ Perovskite Surfaces: Quantum Confinement and Thermal Motion. ACS Omega, 2020, 5, 29477-29491.	3.5	9
41	Ab initiomolecular dynamics study of amorphousCdTeOxalloys: Structural properties. Physical Review B, 2009, 79, .	3.2	8
42	Ultrathin Carbon Nanotube With Single, Double, and Triple Bonds. Physical Review Letters, 2012, 109, 105501.	7.8	8
43	Electronic and atomic structure of complex defects in Al- and Ga-highly doped ZnO films. Materials Chemistry and Physics, 2015, 160, 420-428.	4.0	8
44	Elastic constants and Debye temperature of wz-AlN and wz-GaN semiconductors under high pressure from first-principles. Pramana - Journal of Physics, 2014, 83, 413-425.	1.8	7
45	Exciton and confinement potential effects on the resonant Raman scattering in quantum dots. Semiconductor Science and Technology, 1998, 13, 871-875.	2.0	6
46	COMPOSITION MIXTURE PROBABILISTIC MODEL IN THE FORMATION OF SEMICONDUCTOR MATERIALS OBTAINED BY RANDOM GROWTH TECHNIQUES. Modern Physics Letters B, 2001, 15, 643-646.	1.9	6
47	Resonant Raman scattering off neutral quantum dots. Physical Review B, 2002, 65, .	3.2	6
48	Resonance Raman scattering in semiconductor quantum dots: Adiabatic versus time-dependent perturbation theory. Physical Review B, 2002, 66, .	3.2	6
49	Electronic structure of binary and ternary components of CdTe:O thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, S104-S107.	0.8	6
50	Nonhydrostatic compression of bismuth to 222GPa: Some constraints on elasticity of the bcc-phase. Journal of Physics and Chemistry of Solids, 2006, 67, 2192-2196.	4.0	6
51	Core-level shift analysis of amorphous CdTeO x materials. Journal of Materials Science, 2010, 45, 5071-5076.	3.7	6
52	Spin-orbit coupling effects in gold clusters: The case of Au ₁₃ . Journal of Physics: Conference Series, 2016, 720, 012034.	0.4	6
53	First principle study of V-implantation in highly-doped silicon materials. Computational Materials Science, 2017, 136, 207-215.	3.0	6
54	Ab initio study of Ti3Si0.5Ge0.5C2 under pressure. Journal of Physics and Chemistry of Solids, 2006, 67, 2149-2153.	4.0	5

#	Article	IF	Citations
55	Theoretical study of intrinsic defects in CdTe. Journal of Physics: Conference Series, 2016, 720, 012031.	0.4	5
56	Phenomenological model for long-wavelength optical modes in transition metal dichalcogenide monolayer. Physical Review B, 2021, 103 , .	3.2	5
57	Energetics and Electronic Properties of Interstitial Chlorine in CdTe. Physica Status Solidi (B): Basic Research, 2019, 256, 1800219.	1.5	4
58	Mixed-anion mixed-cation perovskite (FAPbI ₃ 0.125: an <i>ab initio</i> molecular dynamics study. Journal of Materials Chemistry A, 2022, 10, 9592-9603.	10.3	4
59	Publisher's Note: Electronic properties of bulkî 3 â 2 Al2O3[Phys. Rev. B72, 035116 (2005)]. Physical Review B, 2005, 72, .	3.2	3
60	Proposal for a modified $M\tilde{A}_{_{\!3}}$ ller-Plesset perturbation theory. Physical Review A, 2006, 73, .	2.5	3
61	Electronic and thermal properties of non-stoichiometric and doped cobaltum antimonide. Materials Research Express, 2018, 5, 025908.	1.6	3
62	Resonant Raman Scattering in Asymmetric Semiconductor Quantum Disks. Physica Status Solidi (B): Basic Research, 1999, 215, 459-463.	1.5	2
63	Interband absorption and luminescence in small quantum dots under strong magnetic fields. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 8, 333-341.	2.7	2
64	Inducing a level inside of CdTe bandgap doping with Sn using a co-sublimation technique by CSS. Materials Science in Semiconductor Processing, 2020, 107, 104836.	4.0	2
65	Comment on "The effects of electric field on the electronic structure of a semiconductor quantum dot―[J. Appl. Phys.84, 1454 (1998)]. Journal of Applied Physics, 2004, 95, 3223-3224.	2.5	1
66	Stark effect in CdSe nanocrystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, S42-S45.	0.8	1
67	Sn doped CdTe as candidate for intermediate-band solar cells: A first principles DFT+GW study. Journal of Physics: Conference Series, 2016, 720, 012033.	0.4	1
68	Theoretical study of bismuth-doped CdTe. Journal of Physics: Conference Series, 2018, 1043, 012044.	0.4	1
69	Symmetry and thermodynamics of tellurium vacancies in cadmium telluride. Physica B: Condensed Matter, 2019, 568, 81-87.	2.7	1
70	Impurity absorption in spherical quantum dots. AIP Conference Proceedings, 1996, , .	0.4	0
71	Exciton–phonon complexes and optical properties in CdSe nanocrystals. Journal of Physics Condensed Matter, 2006, 18, 7283-7298.	1.8	0
72	Density functional theory study of defects in cadmium telluride: a PBC and QM/MM comparison. Journal of Physics: Conference Series, 2018, 1043, 012043.	0.4	0

#	Article	lF	CITATIONS
73	Bismuth Doping of CdTe: The Effect of Spin–Orbit Coupling. Physica Status Solidi (B): Basic Research, 2020, 257, 1900693.	1.5	O