Douglas B Mawhinney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12136046/publications.pdf

Version: 2024-02-01

13 papers	2,165 citations	12 h-index	1125743 13 g-index
13	13	13	2777
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transformation of 1 <i>H</i> -Benzotriazole by Ozone in Aqueous Solution. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental	10.0	66
2	Real-Time Detection and Identification of Aqueous Chlorine Transformation Products Using QTOF MS. Analytical Chemistry, 2008, 80, 4193-4199.	6.5	17
3	The determination of organophosphonate nerve agent metabolites in human urine by hydrophilic interaction liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 852, 235-243.	2.3	86
4	Enhancing the response of alkyl methylphosphonic acids in negative electrospray ionization liquid chromatography tandem mass spectrometry by post-column addition of organic solvents. Journal of the American Society for Mass Spectrometry, 2007, 18, 1821-1826.	2.8	31
5	FTIR study of the oxidation of amorphous carbon by ozone at 300 K â€" Direct COOH formation. Carbon, 2001, 39, 1167-1173.	10.3	123
6	Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chemical Physics Letters, 2000, 321, 292-296.	2.6	442
7	Surface defect site density on single walled carbon nanotubes by titration. Chemical Physics Letters, 2000, 324, 213-216.	2.6	370
8	Infrared Spectroscopic Study of Surface Diffusion to Surface Hydroxyl Groups on Al2O3:Â 2-Chloroethylethyl Sulfide Adsorption Site Selection. Langmuir, 2000, 16, 2237-2241.	3.5	31
9	Infrared Spectral Evidence for the Etching of Carbon Nanotubes:  Ozone Oxidation at 298 K. Journal of the American Chemical Society, 2000, 122, 2383-2384.	13.7	568
10	Breaking the Ga–CH3 bond at cryogenic temperatures using atomic hydrogen. Adsorbed trimethylgallium reactivity. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 679-685.	2.1	2
11	Adsorption Studies by Transmission IR Spectroscopy:Â A New Method for Opaque Materials. Langmuir, 1999, 15, 4617-4621.	3.5	43
12	Adsorption and Reaction of 2-Chloroethylethyl Sulfide with Al2O3Surfaces. Langmuir, 1999, 15, 4789-4795.	3.5	72
13	FTIR Study of the Oxidation of Porous Silicon. Journal of Physical Chemistry B, 1997, 101, 1202-1206.	2.6	314