Xuemin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12133816/publications.pdf

Version: 2024-02-01

62 papers 4,812 citations

33 h-index 62 g-index

64 all docs 64
docs citations

times ranked

64

6589 citing authors

#	Article	IF	CITATIONS
1	The role of eIF2 phosphorylation in cell and organismal physiology: new roles for well-known actors. Biochemical Journal, 2022, 479, 1059-1082.	3.7	7
2	Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis. Cellular and Molecular Life Sciences, 2021, 78, 249-270.	5.4	14
3	Elongation factor eEF2 kinase and autophagy jointly promote survival of cancer cells. Biochemical Journal, 2021, 478, 1547-1569.	3.7	1
4	Progress in developing MNK inhibitors. European Journal of Medicinal Chemistry, 2021, 219, 113420.	5.5	28
5	The composition of the gut microbiota following early-life antibiotic exposure affects host health and longevity in later life. Cell Reports, 2021, 36, 109564.	6.4	31
6	Disabling MNK protein kinases promotes oxidative metabolism and protects against diet-induced obesity. Molecular Metabolism, 2020, 42, 101054.	6.5	18
7	The prohibitin-binding compound fluorizoline affects multiple components of the translational machinery and inhibits protein synthesis. Journal of Biological Chemistry, 2020, 295, 9855-9867.	3.4	9
8	The eEF2 kinase-induced STAT3 inactivation inhibits lung cancer cell proliferation by phosphorylation of PKM2. Cell Communication and Signaling, 2020, 18, 25.	6.5	23
9	eEF2K enhances expression of PD-L1 by promoting the translation of its mRNA. Biochemical Journal, 2020, 477, 4367-4381.	3.7	25
10	Regulation of the Elongation Phase of Protein Synthesis Enhances Translation Accuracy and Modulates Lifespan. Current Biology, 2019, 29, 737-749.e5.	3.9	60
11	Design, synthesis and activity of Mnk1 and Mnk2 selective inhibitors containing thieno[2,3-d]pyrimidine scaffold. European Journal of Medicinal Chemistry, 2019, 162, 735-751.	5.5	28
12	Nonâ€highâ€density lipoprotein cholesterol is more informative than traditional cholesterol indices in predicting diabetes risk for women with normal glucose tolerance. Journal of Diabetes Investigation, 2018, 9, 1304-1311.	2.4	7
13	Eukaryotic elongation factor 2 kinase upregulates the expression of proteins implicated in cell migration and cancer cell metastasis. International Journal of Cancer, 2018, 142, 1865-1877.	5.1	32
14	Who does TORC2 talk to?. Biochemical Journal, 2018, 475, 1721-1738.	3.7	29
15	A novel role for CRTC2 in hepatic cholesterol synthesis through SREBPâ€2. Hepatology, 2017, 66, 481-497.	7.3	31
16	Eukaryotic Elongation Factor 2 Kinase (eEF2K) in Cancer. Cancers, 2017, 9, 162.	3.7	49
17	Oncogenic MNK signalling regulates the metastasis suppressor NDRG1. Oncotarget, 2017, 8, 46121-46135.	1.8	17
18	mTOR inhibitors in cancer therapy. F1000Research, 2016, 5, 2078.	1.6	228

#	Article	IF	CITATIONS
19	Elongation factor 2 kinase promotes cell survival by inhibiting protein synthesis without inducing autophagy. Cellular Signalling, 2016, 28, 284-293.	3.6	36
20	Glycine restores the anabolic response to leucine in a mouse model of acute inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E970-E981.	3.5	26
21	mTORC2 is a tyrosine kinase. Cell Research, 2016, 26, 1-2.	12.0	21
22	Eukaryotic elongation factor 2 kinase regulates theÂsynthesis of microtubuleâ€related proteins in neurons. Journal of Neurochemistry, 2016, 136, 276-284.	3.9	42
23	Regulated stability of eukaryotic elongation factor 2 kinase requires intrinsic but not ongoing activity. Biochemical Journal, 2015, 467, 321-331.	3.7	18
24	Elongation Factor 2 Kinase Is Regulated by Proline Hydroxylation and Protects Cells during Hypoxia. Molecular and Cellular Biology, 2015, 35, 1788-1804.	2.3	62
25	Eukaryotic Elongation Factor 2 Kinase Activity Is Controlled by Multiple Inputs from Oncogenic Signaling. Molecular and Cellular Biology, 2014, 34, 4088-4103.	2.3	84
26	Eukaryotic elongation factor 2 kinase, an unusual enzyme with multiple roles. Advances in Biological Regulation, 2014, 55, 15-27.	2.3	149
27	Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase. Biochemical Journal, 2012, 442, 681-692.	3.7	49
28	Identification of Residues That Underpin Interactions within the Eukaryotic Initiation Factor (eIF2) 2B Complex. Journal of Biological Chemistry, 2012, 287, 8263-8274.	3.4	23
29	Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice. Learning and Memory, 2012, 19, 116-125.	1.3	61
30	Evaluation of mTOR-Regulated mRNA Translation. Methods in Molecular Biology, 2012, 821, 171-185.	0.9	17
31	mTORC1 signaling: what we still don't know. Journal of Molecular Cell Biology, 2011, 3, 206-220.	3.3	114
32	Adult-onset leukoencephalopathies with vanishing white matter with novel missense mutations in EIF2B2, EIF2B3, and EIF2B5. Neurogenetics, 2011, 12, 259-261.	1.4	32
33	Severity of vanishing white matter disease does not correlate with deficits in eIF2B activity or the integrity of eIF2B complexes. Human Mutation, 2011, 32, 1036-1045.	2.5	68
34	Functional analysis of recently identified mutations in eukaryotic translation initiation factor $2B\acute{E}$ (eIF2 $B\acute{E}$) identified in Chinese patients with vanishing white matter disease. Journal of Human Genetics, 2011, 56, 300-305.	2.3	17
35	ABC50 Promotes Translation Initiation in Mammalian Cells. Journal of Biological Chemistry, 2009, 284, 24061-24073.	3.4	91
36	Blocking eukaryotic initiation factor 4F complex formation does not inhibit the mTORC1-dependent activation of protein synthesis in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H505-H514.	3.2	19

3

#	Article	IF	Citations
37	Nutrient control of TORC1, a cell-cycle regulator. Trends in Cell Biology, 2009, 19, 260-267.	7.9	186
38	Rheb activates protein synthesis and growth in adult rat ventricular cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2008, 45, 812-820.	1.9	24
39	A Novel Mechanism for the Control of Translation Initiation by Amino Acids, Mediated by Phosphorylation of Eukaryotic Initiation Factor 2B. Molecular and Cellular Biology, 2008, 28, 1429-1442.	2.3	52
40	Re-evaluating the Roles of Proposed Modulators of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. Journal of Biological Chemistry, 2008, 283, 30482-30492.	3.4	132
41	Methods for Studying Signalâ€Dependent Regulation of Translation Factor Activity. Methods in Enzymology, 2007, 431, 113-142.	1.0	33
42	The mTOR Pathway in the Control of Protein Synthesis. Physiology, 2006, 21, 362-369.	3.1	549
43	Distinct Signaling Events Downstream of mTOR Cooperate To Mediate the Effects of Amino Acids and Insulin on Initiation Factor 4E-Binding Proteins. Molecular and Cellular Biology, 2005, 25, 2558-2572.	2.3	194
44	Mutations Linked to Leukoencephalopathy with Vanishing White Matter Impair the Function of the Eukaryotic Initiation Factor 2B Complex in Diverse Ways. Molecular and Cellular Biology, 2004, 24, 3295-3306.	2.3	113
45	ANG II activates effectors of mTOR via PI3-K signaling in human coronary smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1232-H1238.	3.2	51
46	The C Terminus of Initiation Factor 4E-Binding Protein 1 Contains Multiple Regulatory Features That Influence Its Function and Phosphorylation. Molecular and Cellular Biology, 2003, 23, 1546-1557.	2.3	100
47	Target of Rapamycin (TOR)-signaling and RAIP Motifs Play Distinct Roles in the Mammalian TOR-dependent Phosphorylation of Initiation Factor 4E-binding Protein 1. Journal of Biological Chemistry, 2003, 278, 40717-40722.	3.4	116
48	Evidence that the dephosphorylation of Ser535 in the â^Š-subunit of eukaryotic initiation factor (eIF) 2B is insufficient for the activation of eIF2B by insulin. Biochemical Journal, 2002, 367, 475-481.	3.7	43
49	Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. FEBS Journal, 2002, 269, 3076-3085.	0.2	149
50	Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochemical Journal, 2001, 358, 497-503.	3.7	32
51	Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochemical Journal, 2001, 358, 497.	3.7	31
52	The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2BÉ at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochemical Journal, 2001, 355, 609-615.	3.7	299
53	Activation of mRNA translation in rat cardiac myocytes by insulin involves multiple rapamycin-sensitive steps. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1056-H1068.	3.2	103
54	ABC50 Interacts with Eukaryotic Initiation Factor 2 and Associates with the Ribosome in an ATP-dependent Manner. Journal of Biological Chemistry, 2000, 275, 34131-34139.	3.4	124

#	Article	IF	CITATION
55	Nutrients differentially regulate multiple translation factors and their control by insulin. Biochemical Journal, 1999, 344, 433-441.	3.7	74
56	Nutrients differentially regulate multiple translation factors and their control by insulin. Biochemical Journal, 1999, 344, 433.	3.7	24
57	The Phosphorylation of Eukaryotic Initiation Factor eIF4E in Response to Phorbol Esters, Cell Stresses, and Cytokines Is Mediated by Distinct MAP Kinase Pathways. Journal of Biological Chemistry, 1998, 273, 9373-9377.	3.4	277
58	Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochemical Journal, 1998, 334, 261-267.	3.7	322
59	Heat Shock Increases the Association of Binding Protein-1 with Initiation Factor 4E. Journal of Biological Chemistry, 1997, 272, 32779-32784.	3.4	69
60	p70 S6 Kinase Is Activated by Sodium Arsenite in Adult Rat Cardiomyocytes: Roles for Phosphatidylinositol 3-Kinase and p38 MAP Kinase. Biochemical and Biophysical Research Communications, 1997, 238, 207-212.	2.1	49
61	Activation of translation initiation factor eIF2B by insulin requires phosphatidyl inositol 3-kinase. FEBS Letters, 1997, 410, 418-422.	2.8	93
62	Role of Eukaryotic Initiation Factor elF2B in Vanishing White Matter Disease., 0,, 595-618.		1