Erik S Jules

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12133714/publications.pdf

Version: 2024-02-01

304743 302126 1,987 41 22 39 citations h-index g-index papers 41 41 41 2568 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The effects of a half century of warming and fire exclusion on montane forests of the Klamath Mountains, California, USA. Ecological Monographs, 2022, 92, .	5.4	3
2	The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biological Reviews, 2022, 97, 1930-1947.	10.4	40
3	Early seral pathways of vegetation change following repeated short-interval, high-severity wildfire in a low-elevation, mixed conifer – hardwood forest landscape of the Klamath Mountains, California. Canadian Journal of Forest Research, 2020, 50, 13-23.	1.7	15
4	Repeated, high-severity wildfire catalyzes invasion of non-native plant species in forests of the Klamath Mountains, northern California, USA. Biological Invasions, 2020, 22, 1821-1828.	2.4	17
5	Whitebark Pine in the National Parks of the Pacific States: An Assessment of Population Vulnerability. Northwest Science, 2020, 94, .	0.2	3
6	Trait plasticity is more important than genetic variation in determining species richness of associated communities. Journal of Ecology, 2019, 107, 350-360.	4.0	15
7	Assessing spatial and temporal patterns of canopy decline across a diverse montane landscape in the Klamath Mountains, CA, USA using a 30-year Landsat time series. Landscape Ecology, 2019, 34, 2599-2614.	4.2	7
8	Whitebark Pine in Crater Lake and Lassen Volcanic National Parks: Assessment of Stand Structure and Condition in a Management and Conservation Perspective. Forests, 2019, 10, 834.	2.1	4
9	Range-wide population structure and dynamics of a serotinous conifer, knobcone pine (Pinus) Tj ETQq1 1 0.78431 Management, 2019, 441, 182-191.	14 rgBT /O 3.2	Overlock 10 T 17
10	Whitebark and Foxtail Pine in Yosemite, Sequoia, and Kings Canyon National Parks: Initial Assessment of Stand Structure and Condition. Forests, 2019, 10, 35.	2.1	16
11	Patterns and Drivers of Recent Tree Mortality in Diverse Conifer Forests of the Klamath Mountains, California. Forest Science, 2018, 64, 371-382.	1.0	9
12	Characterizing Forest Floor Fuels Surrounding Large Sugar Pine (<i>Pinus lambertiana</i>) in the Klamath Mountains, California. Northwest Science, 2018, 92, 181-190.	0.2	4
13	Prescribed fire and conifer removal promote positive understorey vegetation responses in oak woodlands. Journal of Applied Ecology, 2016, 53, 1604-1612.	4.0	18
14	The relative contributions of disease and insects in the decline of a long-lived tree: a stochastic demographic model of whitebark pine (Pinus albicaulis). Forest Ecology and Management, 2016, 381, 144-156.	3.2	11
15	Genetic specificity of a plant–insect food web: Implications for linking genetic variation to network complexity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2128-2133.	7.1	63
16	Disturbance response across a productivity gradient: postfire vegetation in serpentine and nonserpentine forests. Ecosphere, 2015, 6, 1-19.	2.2	25
17	Quantifying habitat loss: Assessing tree encroachment into a serpentine savanna using dendroecology and remote sensing. Forest Ecology and Management, 2015, 340, 9-21.	3.2	15
18	Multiple plant traits shape the genetic basis of herbivore community assembly. Functional Ecology, 2015, 29, 995-1006.	3.6	74

#	Article	IF	CITATIONS
19	Host heterogeneity influences the impact of a nonâ€native disease invasion on populations of a foundation tree species. Ecosphere, 2014, 5, 1-17.	2.2	32
20	Are wolves saving Yellowstone's aspen? A landscapeâ€level test of a behaviorally mediated trophic cascade: reply. Ecology, 2013, 94, 1425-1431.	3.2	30
21	Influence of fire on a rare serpentine plant assemblage: A 5â€year study of <i>Darlingtonia</i> fens. American Journal of Botany, 2011, 98, 801-811.	1.7	6
22	Species interactions and thermal constraints on ant community structure. Oikos, 2010, 119, 551-559.	2.7	77
23	Are wolves saving Yellowstone's aspen? A landscapeâ€level test of a behaviorally mediated trophic cascade. Ecology, 2010, 91, 2742-2755.	3.2	199
24	Assessing the relationships between stand development and understory vegetation using a 420-year chronosequence. Forest Ecology and Management, 2008, 255, 2384-2393.	3.2	56
25	The recovery of ant communities in regenerating temperate conifer forests. Forest Ecology and Management, 2007, 242, 619-624.	3.2	36
26	Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scale. Journal of Biogeography, 2007, 34, 1632-1641.	3.0	83
27	Use of species richness estimators improves evaluation of understory plant response to logging: a study of redwood forests. Plant Ecology, 2007, 194, 179-194.	1.6	27
28	Heterogeneity Shapes Invasion: Host Size And Environment Influence Susceptibility To A Nonnative Pathogen., 2006, 16, 166-175.		52
29	The effects of fire, local environment and time on ant assemblages in fens and forests. Diversity and Distributions, 2005, 11, 487-497.	4.1	50
30	CLIMATIC ASSESSMENT OF A 580-YEAR CHAMAECYPARIS LAWSONIANA (PORT ORFORD CEDAR) TREE-RING CHRONOLOGY IN THE SISKIYOU MOUNTAINS, USA. Madroñ0, 2005, 52, 114-122.	0.4	6
31	Assessing the recovery of a long-lived herb following logging: Trillium ovatum across a 424-year chronosequence. Forest Ecology and Management, 2005, 210, 107-116.	3.2	19
32	A broader ecological context to habitat fragmentation: Why matrix habitat is more important than we thought. Journal of Vegetation Science, 2003, 14, 459-464.	2.2	153
33	OF MICE AND MEN AND TRILLIUM: CASCADING EFFECTS OF FOREST FRAGMENTATION. , 2003, 13, 1193-1203.		73
34	SPREAD OF AN INVASIVE PATHOGEN OVER A VARIABLE LANDSCAPE: A NONNATIVE ROOT ROT ON PORT ORFORD CEDAR. Ecology, 2002, 83, 3167-3181.	3.2	170
35	Managing Port-Orford-Cedar and the Introduced Pathogen Phytophthora lateralis. Plant Disease, 2000, 84, 4-14.	1.4	146
36	Mechanisms of Reduced Trillium Recruitment along Edges of Old-Growth Forest Fragments. Conservation Biology, 1999, 13, 784-793.	4.7	134

ERIK S JULES

#	Article	IF	CITATIONS
37	HABITAT FRAGMENTATION AND DEMOGRAPHIC CHANGE FOR A COMMON PLANT: TRILLIUM IN OLD-GROWTH FOREST. Ecology, 1998, 79, 1645-1656.	3.2	136
38	Yellow Jackets (Vespula vulgaris) as a Second Seed Disperser for the Myrmecochorous Plant, Trillium ovatum. American Midland Naturalist, 1996, 135, 367.	0.4	37
39	Adaptation to metalâ€contaminated soils in populations of the moss, C eratodon purpureus : vegetative growth and reproductive expression. American Journal of Botany, 1994, 81, 791-797.	1.7	52
40	Adaptation to Metal-Contaminated Soils in Populations of the Moss, Ceratodon purpureus: Vegetative Growth and Reproductive Expression. American Journal of Botany, 1994, 81, 791.	1.7	30
41	Effects of Metals on Growth, Morphology, and Reproduction of Ceratodon purpureus. Bryologist, 1991, 94, 270.	0.6	27