
Fazhu Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12132978/publications.pdf Version: 2024-02-01

Елтни Тило

#	Article	IF	CITATIONS
1	Responses of AM fungal abundance to the drivers of global climate change: A meta-analysis. Science of the Total Environment, 2022, 805, 150362.	8.0	8
2	Resource limitation and modeled microbial metabolism along an elevation gradient. Catena, 2022, 209, 105807.	5.0	27
3	Microbial functional genes driving the positive priming effect in forest soils along an elevation gradient. Soil Biology and Biochemistry, 2022, 165, 108498.	8.8	27
4	Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes. Global Change Biology, 2022, 28, 1516-1528.	9.5	37
5	Microbial community structure and functional genes drive soil priming effect following afforestation. Science of the Total Environment, 2022, 825, 153925.	8.0	15
6	Stronger microbial decay of recalcitrant carbon in tropical forests than in subtropical and temperate forest ecosystems in China. Catena, 2022, 215, 106351.	5.0	3
7	Linkage between microbial functional genes and net N mineralisation in forest soils along an elevational gradient. European Journal of Soil Science, 2022, 73, .	3.9	7
8	Contrasting patterns of microbial community and enzyme activity between rhizosphere and bulk soil along an elevation gradient. Catena, 2021, 196, 104921.	5.0	59
9	Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta-analysis. Geoderma, 2021, 381, 114696.	5.1	93
10	Altered microbial CAZyme families indicated dead biomass decomposition following afforestation. Soil Biology and Biochemistry, 2021, 160, 108362.	8.8	17
11	A meta-analysis on cover crop impact on soil water storage, succeeding crop yield, and water-use efficiency. Agricultural Water Management, 2021, 256, 107085.	5.6	35
12	Increasing temperature can modify the effect of straw mulching on soil C fractions, soil respiration, and microbial community composition. PLoS ONE, 2020, 15, e0237245.	2.5	12
13	Contrasting Responses of Rhizosphere Bacteria, Fungi and Arbuscular Mycorrhizal Fungi Along an Elevational Gradient in a Temperate Montane Forest of China. Frontiers in Microbiology, 2020, 11, 2042.	3.5	23
14	Elevation gradients affect the differences of arbuscular mycorrhizal fungi diversity between root and rhizosphere soil. Agricultural and Forest Meteorology, 2020, 284, 107894.	4.8	35
15	Title is missing!. , 2020, 15, e0237245.		0
16	Title is missing!. , 2020, 15, e0237245.		0
17	Title is missing!. , 2020, 15, e0237245.		0

Fazhu Zhao

#	Article	IF	CITATIONS
19	Temporal Variations in Soil Enzyme Activities and Responses to Land-Use Change in the Loess Plateau, China. Applied Sciences (Switzerland), 2019, 9, 3129.	2.5	19
20	Effects of Mixing Feldspathic Sandstone and Sand on Soil Microbial Biomass and Extracellular Enzyme Activities—A Case Study in Mu Us Sandy Land in China. Applied Sciences (Switzerland), 2019, 9, 3963.	2.5	5
21	Soil bacterial and fungal diversity and compositions respond differently to forest development. Catena, 2019, 181, 104071.	5.0	62
22	Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil and Tillage Research, 2019, 192, 103-112.	5.6	91
23	Soil microbial community and carbon and nitrogen fractions responses to mulching under winter wheat. Applied Soil Ecology, 2019, 139, 64-68.	4.3	53
24	Nitrogen and Phosphorus Resorption in Relation to Nutrition Limitation along the Chronosequence of Black Locust (Robinia pseudoacacia L.) Plantation. Forests, 2019, 10, 261.	2.1	30
25	Growing seasonal characteristics of soil and plants control the temporal patterns of bacterial communities following afforestation. Catena, 2019, 178, 288-297.	5.0	10
26	Soil carbon fractions in response to straw mulching in the Loess Plateau of China. Biology and Fertility of Soils, 2018, 54, 423-436.	4.3	35
27	Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes. Forest Ecology and Management, 2018, 409, 170-178.	3.2	119
28	Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biology and Biochemistry, 2018, 116, 4-10.	8.8	151
29	Understory Plants Regulate Soil Respiration through Changes in Soil Enzyme Activity and Microbial C, N, and P Stoichiometry Following Afforestation. Forests, 2018, 9, 436.	2.1	15
30	Response of Soil Carbon Fractions and Dryland Maize Yield to Mulching. Soil Science Society of America Journal, 2018, 82, 371-381.	2.2	13
31	Plant functional composition and species diversity affect soil C, N, and P during secondary succession of abandoned farmland on the Loess Plateau. Ecological Engineering, 2018, 122, 91-99.	3.6	41
32	Response of microbial diversity to C:N:P stoichiometry in fine root and microbial biomass following afforestation. Biology and Fertility of Soils, 2017, 53, 457-468.	4.3	126
33	Understanding soil carbon sequestration following the afforestation of former arable land by physical fractionation. Catena, 2017, 150, 317-327.	5.0	53
34	Grazing intensity influence soil microbial communities and their implications for soil respiration. Agriculture, Ecosystems and Environment, 2017, 249, 50-56.	5.3	93
35	Effect of Soil C, N and P Stoichiometry on Soil Organic C Fractions After Afforestation. Pedosphere, 2017, 27, 705-713.	4.0	21
36	Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biology and Biochemistry, 2017, 115, 1-10.	8.8	165

Fazhu Zhao

#	Article	IF	CITATIONS
37	Effect of Microbial Carbon, Nitrogen, and Phosphorus Stoichiometry on Soil Carbon Fractions under a Black Locust Forest within the Central Loess Plateau of China. Soil Science Society of America Journal, 2016, 80, 1520-1530.	2.2	20
38	Change in Carbon Storage in Soil Physical Fractions after Afforestation of Former Arable Land. Soil Science Society of America Journal, 2016, 80, 1098-1106.	2.2	5
39	Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China. Geoderma, 2016, 282, 103-111.	5.1	107
40	Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China. Scientific Reports, 2016, 6, 28469.	3.3	54
41	Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management, 2016, 376, 59-66.	3.2	206
42	Analysis of the ecological conservation behavior of farmers in payment for ecosystem service programs in eco-environmentally fragile areas using social psychology models. Science of the Total Environment, 2016, 550, 382-390.	8.0	123
43	Soil C, N, P and Its Stratification Ratio Affected by Artificial Vegetation in Subsoil, Loess Plateau China. PLoS ONE, 2016, 11, e0151446.	2.5	39
44	Deep Soil C, N, and P Stocks and Stoichiometry in Response to Land Use Patterns in the Loess Hilly Region of China. PLoS ONE, 2016, 11, e0159075.	2.5	29
45	Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity. Ecological Engineering, 2015, 74, 415-422.	3.6	108
46	Stratification of Carbon Fractions and Carbon Management Index in Deep Soil Affected by the Grain-to-Green Program in China. PLoS ONE, 2014, 9, e99657.	2.5	34
47	Policy-Guided Nationwide Ecological Recovery. Soil Science, 2013, 178, 550-555.	0.9	13