Kenneth W Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12131949/publications.pdf

Version: 2024-02-01

1163117 1474206 25 493 8 9 citations h-index g-index papers 25 25 25 324 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Superâ€resolution microscopy by movable thinâ€films with embedded microspheres: Resolution analysis. Annalen Der Physik, 2015, 527, 513-522.	2.4	110
2	Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers. Optics Express, 2015, 23, 24484.	3.4	91
3	Whispering gallery mode hybridization in photonic molecules. Laser and Photonics Reviews, 2017, 11, 1600278.	8.7	64
4	Microsphere-chain waveguides: Focusing and transport properties. Applied Physics Letters, 2014, 105, .	3.3	45
5	Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres. Applied Physics Letters, 2016, 108, .	3.3	43
6	Formation of polarized beams in chains of dielectric spheres and cylinders. Optics Letters, 2013, 38, 4208.	3.3	28
7	Reply to "Comment on â€~Superâ€resolution microscopy by movable thinâ€films with embedded microspheres: Resolution analysis' [Ann. Phys. (Berlin) 527, 513 (2015)]― Annalen Der Physik, 2016, 528, 901-904.	2.4	24
8	Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices. , 2014, , .		22
9	Optical nanoscopy with contact microlenses overcomes the diffraction limit. SPIE Newsroom, $0,$,.	0.1	19
10	Photonic jets for strained-layer superlattice infrared photodetector enhancement. , 2014, , .		12
11	Light-harvesting microconical arrays for enhancing infrared imaging devices: Proposal and demonstration. Applied Physics Letters, 2021, 119, .	3.3	9
12	Focusing Microprobes Based on Integrated Chains of Microspheres. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2010, 6, 793-797.	0.4	8
13	Spectral finger-prints of photonic molecules. , 2014, , .		6
14	Super-resolution by microspheres and fibers - Myth or reality?. , 2015, , .		3
15	Label-free nanoscopy with contact microlenses: Super-resolution mechanisms and limitations. , 2016, , .		2
16	Label-free cellphone microscopy with submicron resolution through high-index contact ball lens for in vivo melanoma diagnostics and other applications. , 2022, , .		2
17	Fabrication of 3-D light concentrating microphotonic structures by anisotropic wet etching of silicon. , 2022, , .		2
18	Light-harvesting microconical arrays integrated with photodetector FPAs for enhancing infrared imaging devices. , 2022, , .		1

#	Article	IF	CITATIONS
19	Monolithic integration of photodetector focal plane arrays with micropyramidal arrays in mid-wave infrared. , 2022, , .		1
20	Anisotropic Wet Etching of Si as a Fabrication Tool Enabling 3-D Microphotonics Structures and Devices. , $2021, \ldots$		1
21	Deep-UV microsphere-assisted ultramicroscopy. , 2015, , .		O
22	Spectral signatures of photonic molecules with hybridized whispering gallery modes. , 2017, , .		0
23	Wideband 3D Frequency Selective Engineered Structures in the Terahertz Regime. , 2019, , .		O
24	Light-concentrating microcone array for improving performance of infrared imaging devices. , 2021, , .		0
25	Ni-Silicide Schottky Barrier Micropyramidal Photodetector Array. , 2021, , .		O