## Jianfei Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12130093/publications.pdf Version: 2024-02-01



LIANEEL LIANC

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 2017, 13, 81-90.                                                                                                                         | 8.0  | 1,589     |
| 2  | Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nature<br>Chemical Biology, 2005, 1, 223-232.                                                                                              | 8.0  | 1,088     |
| 3  | Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radical Biology and Medicine, 2009, 46, 1439-1453.                                                                                                          | 2.9  | 382       |
| 4  | Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radical Biology and Medicine, 2004, 37, 1963-1985.                                                      | 2.9  | 320       |
| 5  | Mitochondrial Targeting of Selective Electron Scavengers:  Synthesis and Biological Analysis of<br>Hemigramicidinâ^TEMPO Conjugates. Journal of the American Chemical Society, 2005, 127, 12460-12461.                                | 13.7 | 146       |
| 6  | A mitochondrial pathway for biosynthesis of lipid mediators. Nature Chemistry, 2014, 6, 542-552.                                                                                                                                      | 13.6 | 130       |
| 7  | NADPH Oxidase-dependent Oxidation and Externalization of Phosphatidylserine during Apoptosis in<br>Me2SO-differentiated HL-60 Cells. Journal of Biological Chemistry, 2002, 277, 49965-49975.                                         | 3.4  | 123       |
| 8  | The Hierarchy of Structural Transitions Induced in Cytochrome <i>c</i> by Anionic Phospholipids<br>Determines Its Peroxidase Activation and Selective Peroxidation during Apoptosis in Cells.<br>Biochemistry, 2007, 46, 14232-14244. | 2.5  | 110       |
| 9  | Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactionsâ <sup>~</sup> †. Advanced Drug Delivery Reviews, 2009, 61, 1375-1385.                                        | 13.7 | 103       |
| 10 | Dual Function of Mitochondrial Nm23-H4 Protein in Phosphotransfer and Intermembrane Lipid<br>Transfer. Journal of Biological Chemistry, 2013, 288, 111-121.                                                                           | 3.4  | 92        |
| 11 | A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death.<br>Nature Communications, 2011, 2, 497.                                                                                               | 12.8 | 91        |
| 12 | Structural Requirements for Optimized Delivery, Inhibition of Oxidative Stress, and Antiapoptotic<br>Activity of Targeted Nitroxides. Journal of Pharmacology and Experimental Therapeutics, 2007, 320,<br>1050-1060.                 | 2.5  | 80        |
| 13 | A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells<br>Against Gamma Irradiation. International Journal of Radiation Oncology Biology Physics, 2008, 70,<br>816-825.                          | 0.8  | 80        |
| 14 | Hemigramicidin–TEMPO conjugates: Novel mitochondria-targeted anti-oxidants. Biochemical<br>Pharmacology, 2007, 74, 801-809.                                                                                                           | 4.4  | 77        |
| 15 | Mechanisms of Cardiolipin Oxidation by Cytochrome c: Relevance to Pro- and Antiapoptotic Functions of Etoposide. Molecular Pharmacology, 2006, 70, 706-717.                                                                           | 2.3  | 76        |
| 16 | Massâ€spectrometric characterization of phospholipids and their primary peroxidation products in rat<br>cortical neurons during staurosporineâ€induced apoptosis. Journal of Neurochemistry, 2008, 107,<br>1614-1633.                 | 3.9  | 76        |
| 17 | A Mitochondria-Targeted Triphenylphosphonium-Conjugated Nitroxide Functions as a Radioprotector/Mitigator. Radiation Research, 2009, 172, 706-717.                                                                                    | 1.5  | 76        |
| 18 | Interplay between bax, reactive oxygen species production, and cardiolipin oxidation during apoptosis.<br>Biochemical and Biophysical Research Communications, 2008, 368, 145-150.                                                    | 2.1  | 73        |

JIANFEI JIANG

| #  | Article                                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cardiolipin deficiency leads to decreased cardiolipin peroxidation and increased resistance of cells to apoptosis. Free Radical Biology and Medicine, 2008, 44, 1935-1944.                                                                                                                                             | 2.9 | 66        |
| 20 | Arachidonic acidâ€induced carbonâ€centered radicals and phospholipid peroxidation in<br>cycloâ€oxygenaseâ€2â€transfected PC12 cells. Journal of Neurochemistry, 2004, 90, 1036-1049.                                                                                                                                   | 3.9 | 58        |
| 21 | Phosphatidylserine peroxidation/externalization during staurosporine-induced apoptosis in HL-60 cells. FEBS Letters, 2002, 524, 25-30.                                                                                                                                                                                 | 2.8 | 57        |
| 22 | Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria. Free Radical Biology and Medicine, 2003, 35, 814-825.                                                                                                                                                | 2.9 | 52        |
| 23 | Cardiolipin-Specific Peroxidase Reactions of Cytochrome c in Mitochondria During<br>Irradiation-Induced Apoptosis. International Journal of Radiation Oncology Biology Physics, 2007, 69,<br>176-186.                                                                                                                  | 0.8 | 52        |
| 24 | Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids. Free Radical Biology and Medicine, 2014, 71, 221-230.                                                                                                                                  | 2.9 | 40        |
| 25 | Cytochrome c release is required for phosphatidylserine peroxidation during fas-triggered apoptosis in lung epithelial A549 cells. Lipids, 2004, 39, 1133-1142.                                                                                                                                                        | 1.7 | 36        |
| 26 | Design and Synthesis of a Mitochondria-Targeted Mimic of Glutathione Peroxidase, MitoEbselen-2, as a<br>Radiation Mitigator. ACS Medicinal Chemistry Letters, 2014, 5, 1304-1307.                                                                                                                                      | 2.8 | 33        |
| 27 | Mitochondriaâ€targeted (2â€hydroxyaminoâ€vinyl)â€triphenylâ€phosphonium releases NO and protects mouse<br>embryonic cells against irradiationâ€induced apoptosis. FEBS Letters, 2009, 583, 1945-1950.                                                                                                                  | 2.8 | 27        |
| 28 | The cyclooxygenase site, but not the peroxidase site of cyclooxygenaseâ€2 is required for neurotoxicity in hypoxic and ischemic injury. Journal of Neurochemistry, 2010, 113, 965-977.                                                                                                                                 | 3.9 | 26        |
| 29 | A Manganese–Porphyrin Complex Decomposes H <sub>2</sub> O <sub>2</sub> , Inhibits Apoptosis, and Acts as a Radiation Mitigator in Vivo. ACS Medicinal Chemistry Letters, 2011, 2, 814-817.                                                                                                                             | 2.8 | 26        |
| 30 | Oxidation and cytotoxicity of 6-OHDA are mediated by reactive intermediates of COX-2 overexpressed in PC12 cells. Brain Research, 2006, 1093, 71-82.                                                                                                                                                                   | 2.2 | 25        |
| 31 | Mitochondrial Redox Opto-Lipidomics Reveals Mono-Oxygenated Cardiolipins as Pro-Apoptotic Death<br>Signals. ACS Chemical Biology, 2016, 11, 530-540.                                                                                                                                                                   | 3.4 | 22        |
| 32 | Protection of normal brain cells from γ-irradiation-induced apoptosis by a mitochondria-targeted<br>triphenyl-phosphonium-nitroxide: a possible utility in glioblastoma therapy. Journal of<br>Neuro-Oncology, 2010, 100, 1-8.                                                                                         | 2.9 | 20        |
| 33 | LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme<br>Alcat1. Journal of Cell Science, 2016, 129, 51-64.                                                                                                                                                                | 2.0 | 19        |
| 34 | Are mitochondrial reactive oxygen species required for autophagy?. Biochemical and Biophysical Research Communications, 2011, 412, 55-60.                                                                                                                                                                              | 2.1 | 17        |
| 35 | Endogenously Generated Hydrogen Peroxide Is Required for Execution of Melphalan-Induced<br>Apoptosis as Well as Oxidation and Externalization of Phosphatidylserine. Chemical Research in<br>Toxicology, 2004, 17, 685-696.                                                                                            | 3.3 | 16        |
| 36 | Targeting nitroxides to mitochondria: location, location, location, and …concentrationâ~†Highlight<br>Commentary on "Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative<br>damage and apoptosis: Role of mitochondrial superoxide― Free Radical Biology and Medicine, 2007, 43,<br>348-350. | 2.9 | 16        |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Group-Based Trajectory Modeling of Healthcare Financial Charges in Inflammatory Bowel Disease: A<br>Comprehensive Phenotype. Clinical and Translational Gastroenterology, 2016, 7, e181. | 2.5 | 14        |