
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12128769/publications.pdf Version: 2024-02-01

Ρλοιο ΒιλΝΟΟ

#	Article	IF	CITATIONS
1	Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment. Cell, 2007, 131, 324-336.	28.9	2,001
2	Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications. Stem Cells, 2001, 19, 180-192.	3.2	1,768
3	Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays. Cell Stem Cell, 2008, 2, 313-319.	11.1	1,392
4	MT1-MMP-Deficient Mice Develop Dwarfism, Osteopenia, Arthritis, and Connective Tissue Disease due to Inadequate Collagen Turnover. Cell, 1999, 99, 81-92.	28.9	1,213
5	The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nature Medicine, 2013, 19, 35-42.	30.7	1,032
6	Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 2007, 9, 255-267.	10.3	899
7	Stem cells in tissue engineering. Nature, 2001, 414, 118-121.	27.8	870
8	Circulating Skeletal Stem Cells. Journal of Cell Biology, 2001, 153, 1133-1140.	5.2	632
9	FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. Journal of Clinical Investigation, 2003, 112, 683-692.	8.2	567
10	Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nature Genetics, 1998, 20, 78-82.	21.4	543
11	Marrow stromal stem cells. Journal of Clinical Investigation, 2000, 105, 1663-1668.	8.2	512
12	The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development (Cambridge), 2002, 129, 2773-2783.	2.5	429
13	Expression of bone sialoprotein (BSP) in developing human tissues. Calcified Tissue International, 1991, 49, 421-426.	3.1	385
14	No Identical "Mesenchymal Stem Cells―at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels. Stem Cell Reports, 2016, 6, 897-913.	4.8	378
15	"Mesenchymal―Stem Cells. Annual Review of Cell and Developmental Biology, 2014, 30, 677-704.	9.4	345
16	Skeletal stem cells. Development (Cambridge), 2015, 142, 1023-1027.	2.5	302
17	The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gs? gene: site-specific patterns and recurrent histological hallmarks. , 1999, 187, 249-258.		234
18	Mesoangioblasts — vascular progenitors for extravascular mesodermal tissues. Current Opinion in Genetics and Development, 2003, 13, 537-542.	3.3	234

#	Article	IF	CITATIONS
19	Bone and the hematopoietic niche: a tale of two stem cells. Blood, 2011, 117, 5281-5288.	1.4	216
20	The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. Journal of Cell Science, 2005, 118, 147-156.	2.0	215
21	Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Human Molecular Genetics, 2007, 16, 1113-1123.	2.9	202
22	The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development (Cambridge), 2002, 129, 2773-83.	2.5	168
23	MT1â€MMP: A tethered collagenase. Journal of Cellular Physiology, 2004, 200, 11-19.	4.1	166
24	Renal Phosphate Wasting in Fibrous Dysplasia of Bone Is Part of a Generalized Renal Tubular Dysfunction Similar to That Seen in Tumor-Induced Osteomalacia. Journal of Bone and Mineral Research, 2001, 16, 806-813.	2.8	165
25	Bone formation via cartilage models: The "borderline―chondrocyte. Matrix Biology, 1998, 17, 185-192.	3.6	162
26	"Mesenchymal―Stem Cells in Human Bone Marrow (Skeletal Stem Cells): A Critical Discussion of Their Nature, Identity, and Significance in Incurable Skeletal Disease. Human Gene Therapy, 2010, 21, 1057-1066.	2.7	154
27	Characterization of <i>gsp</i> -Mediated Growth Hormone Excess in the Context of McCune-Albright Syndrome. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5104-5112.	3.6	145
28	Postnatal Skeletal Stem Cells. Methods in Enzymology, 2006, 419, 117-148.	1.0	142
29	Fracture Incidence in Polyostotic Fibrous Dysplasia and the McCune-Albright Syndrome. Journal of Bone and Mineral Research, 2004, 19, 571-577.	2.8	136
30	MT1-MMP–dependent, apoptotic remodeling of unmineralized cartilage. Journal of Cell Biology, 2003, 163, 661-671.	5.2	136
31	Formation of a chondro-osseous rudiment in micromass cultures of human bone-marrow stromal cells. Journal of Cell Science, 2003, 116, 2949-2955.	2.0	127
32	Biglycan Deficiency Causes Spontaneous Aortic Dissection and Rupture in Mice. Circulation, 2007, 115, 2731-2738.	1.6	126
33	Osteogenic imprinting upstream of marrow stromal cell differentiation. Journal of Cellular Biochemistry, 2000, 78, 391-403.	2.6	124
34	Reconstruction of Extensive Long Bone Defects in Sheep Using Resorbable Bioceramics Based on Silicon Stabilized Tricalcium Phosphate. Tissue Engineering, 2006, 12, 1261-1273.	4.6	120
35	Age-Dependent Demise of <i>GNAS</i> -Mutated Skeletal Stem Cells and "Normalization―of Fibrous Dysplasia of Bone. Journal of Bone and Mineral Research, 2008, 23, 1731-1740.	2.8	119
36	Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo. Journal of Bone and Mineral Research, 1994, 9, 1239-1249.	2.8	118

#	Article	lF	CITATIONS
37	Uno, nessuno e centomila: Searching for the Identity of Mesodermal Progenitors. Experimental Cell Research, 1999, 251, 257-263.	2.6	117
38	Natural history and treatment of fibrous dysplasia of bone: a multicenter clinicopathologic study promoted by the European Pediatric Orthopaedic Society. Journal of Pediatric Orthopaedics Part B, 2003, 12, 155-77.	0.6	117
39	Multipotential Cells in the Bone Marrow Stroma: Regulation in the Context of Organ Physiology. Critical Reviews in Eukaryotic Gene Expression, 1999, 9, 159-173.	0.9	115
40	The interplay of osteogenesis and hematopoiesis. Journal of Cell Biology, 2004, 167, 1113-1122.	5.2	113
41	An Instrument to Measure Skeletal Burden and Predict Functional Outcome in Fibrous Dysplasia of Bone. Journal of Bone and Mineral Research, 2004, 20, 219-226.	2.8	107
42	A Randomized, Double Blind, Placebo-Controlled Trial of Alendronate Treatment for Fibrous Dysplasia of Bone. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 4133-4140.	3.6	107
43	Fibrous Dysplasia as a Stem Cell Disease. Journal of Bone and Mineral Research, 2006, 21, P125-P131.	2.8	103
44	A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. Journal of Cell Biology, 2001, 155, 1333-1344.	5.2	102
45	Reduced Growth and Skeletal Changes in Zinc-Deficient Growing Rats Are Due to Impaired Growth Plate Activity and Inanition. Journal of Nutrition, 2001, 131, 1142-1146.	2.9	99
46	Journal of Bone and Mineral Research. Journal of Bone and Mineral Research, 1993, 8, S483-S487.	2.8	94
47	Pathology of Bone Lesions Associated With Congenital Pseudarthrosis of the Leg. Journal of Pediatric Orthopaedics Part B, 2000, 9, 3-10.	0.6	91
48	Osteomalacic and Hyperparathyroid Changes in Fibrous Dysplasia Of Bone: Core Biopsy Studies and Clinical Correlations. Journal of Bone and Mineral Research, 2003, 18, 1235-1246.	2.8	87
49	Enumeration of the colony-forming units–fibroblast from mouse and human bone marrow in normal and pathological conditions. Stem Cell Research, 2009, 2, 83-94.	0.7	83
50	EXPRESSION OFMet PROTEIN IN THYROID TUMOURS. , 1996, 180, 266-270.		79
51	The use of adult stem cells in rebuilding the human face. Journal of the American Dental Association, 2006, 137, 961-972.	1.5	79
52	Regulation of stem cell therapies under attack in Europe: for whom the bell tolls. EMBO Journal, 2013, 32, 1489-1495.	7.8	79
53	Establishment of bone marrow and hematopoietic niches in vivo by reversion of chondrocyte differentiation of human bone marrow stromal cells. Stem Cell Research, 2014, 12, 659-672.	0.7	78
54	Transfer, analysis, and reversion of the fibrous dysplasia cellular phenotype in human skeletal progenitors. Journal of Bone and Mineral Research, 2010, 25, 1103-1116.	2.8	77

#	Article	IF	CITATIONS
55	Parathyroid Hormone [PTH(1-34)] and Parathyroid Hormone-Related Protein [PTHrP(1-34)] Promote Reversion of Hypertrophic Chondrocytes to a Prehypertrophic Proliferating Phenotype and Prevent Terminal Differentiation of Osteoblast-like Cells. Journal of Bone and Mineral Research, 1999, 14, 1281-1289.	2.8	76
56	Diseases of Bone and the Stromal Cell Lineage. Journal of Bone and Mineral Research, 1999, 14, 336-341.	2.8	72
57	TGFβ/BMP activate the smooth muscle/bone differentiation programs in mesoangioblasts. Journal of Cell Science, 2004, 117, 4377-4388.	2.0	70
58	Human Bone Marrow Mesenchymal Stem Cells: A Systematic Reappraisal Via the Genostem Experience. Stem Cell Reviews and Reports, 2011, 7, 32-42.	5.6	69
59	Order versus Disorder: in vivo bone formation within osteoconductive scaffolds. Scientific Reports, 2012, 2, 274.	3.3	67
60	Constitutive Expression of GsαR201C in Mice Produces a Heritable, Direct Replica of Human Fibrous Dysplasia Bone Pathology and Demonstrates Its Natural History. Journal of Bone and Mineral Research, 2014, 29, 2357-2368.	2.8	66
61	Regulation: Sell help not hope. Nature, 2014, 510, 336-337.	27.8	63
62	Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2007, 104, 618.e1-618.e12.	1.4	62
63	Bone Marrow Stromal Cell Assays: In Vitro and In Vivo. Methods in Molecular Biology, 2014, 1130, 279-293.	0.9	62
64	Gnathodiaphyseal Dysplasia: A Syndrome of Fibro-Osseous Lesions of Jawbones, Bone Fragility, and Long Bone Bowing. Journal of Bone and Mineral Research, 2001, 16, 1710-1718.	2.8	61
65	Skeletal progenitors and the GNAS gene: fibrous dysplasia of bone read through stem cells. Journal of Molecular Endocrinology, 2010, 45, 355-364.	2.5	61
66	Back to the future: Moving beyond "mesenchymal stem cells― Journal of Cellular Biochemistry, 2011, 112, 1713-1721.	2.6	58
67	A Novel GNAS1 Mutation, R201G, in McCune-Albright Syndrome. Journal of Bone and Mineral Research, 1999, 14, 1987-1989.	2.8	57
68	Minireview: The Stem Cell Next Door: Skeletal and Hematopoietic Stem Cell "Niches―in Bone. Endocrinology, 2011, 152, 2957-2962.	2.8	57
69	Skeletal Stem Cells in Space and Time. Cell, 2015, 160, 17-19.	28.9	56
70	Vis-Ã-Vis Cells and the Priming of Bone Formation. Journal of Bone and Mineral Research, 1998, 13, 1852-1861.	2.8	52
71	Osteoprogenitors and the hematopoietic microenvironment. Best Practice and Research in Clinical Haematology, 2011, 24, 37-47.	1.7	49
72	On the role of MT1â€MMP, a matrix metalloproteinase essential to collagen remodeling, in murine molar eruption and root growth. European Journal of Oral Sciences, 2002, 110, 445-451.	1.5	46

PAOLO BIANCO

#	Article	IF	CITATIONS
73	Mechanisms of Osteoclast Dysfunction in Human Osteopetrosis: Abnormal Osteoclastogenesis and Lack of Osteoclast-Specific Adhesion Structures. Journal of Bone and Mineral Research, 1999, 14, 2107-2117.	2.8	43
74	In Vivo Osteoprogenitor Potency of Human Stromal Cells from Different Tissues Does Not Correlate with Expression of POU5F1 or Its Pseudogenes. Stem Cells, 2008, 26, 2419-2424.	3.2	43
75	A novel technique based on a PNA hybridization probe and FRET principle for quantification of mutant genotype in fibrous dysplasia/McCune-Albright syndrome. Nucleic Acids Research, 2004, 32, e63-e63.	14.5	42
76	Stem cells and bone: A historical perspective. Bone, 2015, 70, 2-9.	2.9	41
77	Confocal images of marrow stromal (Westen-Bainton) cells. Histochemistry, 1993, 100, 93-99.	1.9	40
78	GNAS transcripts in skeletal progenitors: evidence for random asymmetric allelic expression of GsÂ. Human Molecular Genetics, 2007, 16, 1921-1930.	2.9	35
79	Endosteal surfaces in hyperparathyroidism: An enzyme cytochemical study on low-temperature-processed, glycol-methacrylate-embedded bone biopsies. Virchows Archiv A, Pathological Anatomy and Histopathology, 1991, 419, 425-431.	1.4	31
80	Osteoblast-Specific Expression of the Fibrous Dysplasia (FD)–Causing Mutation <i>GsαR201C</i> Produces a High Bone Mass Phenotype but Does Not Reproduce FD in the Mouse. Journal of Bone and Mineral Research, 2015, 30, 1030-1043.	2.8	31
81	Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders. Blood, 2015, 125, 793-802.	1.4	31
82	The bone marrow stroma <i>in vivo</i> : ontogeny, structure, cellular composition and changes in disease. , 1998, , 10-25.		30
83	Skeletal Stem Cells. , 2004, , 415-424.		29
84	Evaluation of the osteoconductive potential of bone substitutes embedded with <scp>s</scp> chneiderian membrane―or maxillary bone marrowâ€derived osteoprogenitor cells. Clinical Oral Implants Research, 2013, 24, 1288-1294.	4.5	28
85	Marrow stromal (Westen-Bainton) cells: Identification, morphometry, confocal imaging and changes in disease. Bone, 1993, 14, 315-320.	2.9	26
86	Natural history and treatment of fibrous dysplasia of bone: a multicenter clinicopathologic study promoted by the European Pediatric Orthopaedic Society. Journal of Pediatric Orthopaedics Part B, 2003, 12, 155-177.	0.6	26
87	Skeletal ("Mesenchymalâ€) Stem Cells for Tissue Engineering. Methods in Molecular Medicine, 2007, 140, 83-99.	0.8	25
88	Hurler Disease Bone Marrow Stromal Cells Exhibit Altered Ability to Support Osteoclast Formation. Stem Cells and Development, 2012, 21, 1466-1477.	2.1	24
89	Don't market stem-cell products ahead of proof. Nature, 2013, 499, 255-255.	27.8	24
90	MT1-mmp. Cancer Cell, 2003, 4, 83-84.	16.8	22

#	Article	IF	CITATIONS
91	Stem Cells in Skeletal Physiology and Endocrine Diseases of Bone. Endocrine Development, 2011, 21, 91-101.	1.3	22
92	Stem cells and bone diseases: New tools, new perspective. Bone, 2015, 70, 55-61.	2.9	17
93	The role of osteogenic cells in the pathophysiology of paget's disease. Journal of Bone and Mineral Research, 1999, 14, 9-16.	2.8	16
94	Plasma fatty acid lipidome is associated with cirrhosis prognosis and graft damage in liver transplantation. American Journal of Clinical Nutrition, 2014, 100, 600-608.	4.7	15
95	Achondrogenesis Type IB. Archives of Pathology and Laboratory Medicine, 2001, 125, 1375-1378.	2.5	15
96	An animal model of fibrous dysplasia. Trends in Molecular Medicine, 1999, 5, 322-323.	2.6	12
97	Cellular Mechanisms of Age-Related Bone Loss. , 1999, , 145-157.		12
98	Graft vascularization is a critical rate-limiting step in skeletal stem cell-mediated posterolateral spinal fusion. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 273-283.	2.7	11
99	Reply to MSCs: science and trials. Nature Medicine, 2013, 19, 813-814.	30.7	11
100	Clonal Analysis Delineates Transcriptional Programs of Osteogenic and Adipogenic Lineages of Adult Mouse Skeletal Progenitors. Stem Cell Reports, 2018, 11, 212-227.	4.8	9
101	Natural history and treatment of fibrous dysplasia of bone: a multicenter clinicopathologic study promoted by the European Pediatric Orthopaedic Society. Journal of Pediatric Orthopaedics Part B, 2003, 12, 155-177.	0.6	8
102	CONGENITAL UNILATERAL POSTEROMEDIAL BOWING OF THE TIBIA AND FIBULA. Journal of Bone and Joint Surgery - Series A, 2005, 87, 1601-1605.	3.0	8
103	Bone Marrow Stromal Cell Assays: In Vitro and In Vivo. Methods in Molecular Biology, 2021, 2230, 379-396.	0.9	7
104	Life in plastic is fantastic. Blood, 2007, 110, 3090-3090.	1.4	3
105	Clinical Vignette: Angiomatosis of Bone With Localized Mineralization Defect. Journal of Bone and Mineral Research, 2001, 16, 1750-1753.	2.8	2
106	Stem Cells in Tissue Engineering. , 2004, , 785-792.		2
107	Bone cells, osteoprogenitors, and hematopoiesis. IBMS BoneKEy, 2008, 5, 269-274.	0.0	2

#	Article	IF	CITATIONS
109	Stem Cells in Tissue Engineering. , 2013, , 965-972.		1
110	The Collagenous and Noncollagenous Proteins of Cells in the Osteoblastic Lineage. Advances in Organ Biology, 1998, 5, 565-589.	0.1	0
111	Mesoangioblasts — vascular progenitors for extravascular mesodermal tissues. Current Opinion in Genetics and Development, 2003, 13, 537-537.	3.3	0
112	Postnatal Stem Cells. , 2007, , 459-468.		0
113	Postnatal Stem Cells in Tissue Engineering. , 2014, , 639-653.		0
114	Stem cell niches in the bone–bone marrow organ and their significance for hematopoietic and non-hematopoietic cancer. , 2015, , 29-37.		0
115	Metastasis in the Bone Marrow Microenvironment. Cancer Metastasis - Biology and Treatment, 2004, , 71-85.	0.1	0
116	Postnatal Stem Cells in Tissue Engineering. , 2009, , 583-590.		0
117	MSCs: The Need to Rethink. , 2013, , 43-57.		0