Andy T S Hor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1212875/publications.pdf

Version: 2024-02-01

313 papers

13,467 citations

56 h-index 99 g-index

315 all docs

315 docs citations

315 times ranked

15670 citing authors

#	Article	IF	Citations
1	Co@Co ₃ O ₄ @PPD Core@bishell Nanoparticleâ€Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 2580-2587.	10.0	86
2	The 5th Molecular Materials Meeting (M3) @ Singapore. Australian Journal of Chemistry, 2016, 69, 361.	0.9	0
3	Re(I) carbonyl complexes containing pyridyl-imine and amine ligands: Synthesis, characterization and their catalytic olefin epoxidation activities. Journal of Organometallic Chemistry, 2016, 814, 1-7.	1.8	14
4	Multicomponent (Ce, Cu, Ni) oxides with cage and core–shell structures: tunable fabrication and enhanced CO oxidation activity. Nanoscale, 2016, 8, 9521-9526.	5.6	17
5	Utilisation of gold nanoparticles on amine-functionalised UiO-66 (NH ₂ -UiO-66) nanocrystals for selective tandem catalytic reactions. Chemical Communications, 2016, 52, 6557-6560.	4.1	59
6	A binary catalyst system of a cationic Ru–CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide. Chemical Communications, 2016, 52, 11842-11845.	4.1	25
7	Intrinsically Conductive Perovskite Oxides with Enhanced Stability and Electrocatalytic Activity for Oxygen Reduction Reactions. ACS Catalysis, 2016, 6, 7865-7871.	11.2	51
8	Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. Journal of Power Sources, 2016, 332, 330-336.	7.8	129
9	Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst. Scientific Reports, 2016, 6, 33154.	3.3	77
10	Novel MII (M = Mn, Fe, Co, Ni) Coordination Assemblies Based on 2-(((1-(Pyridin-n-ylmethyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyridine Ligands. Australian Journal of Chemistry, 2016, 69, 645.	0.9	2
11	The effect of crystallinity on photocatalytic performance of Co ₃ O ₄ water-splitting cocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 5172-5178.	2.8	50
12	Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N–C) as efficient oxygen catalysts for Zn-air batteries. Nanoscale, 2016, 8, 5067-5075.	5.6	109
13	Hybrid 1,2,3-Triazole Supported Cull Complexes: Tuning Assembly and Weak Interaction-Driven Crystal Growth. Australian Journal of Chemistry, 2016, 69, 372.	0.9	11
14	Cyclopentadienyl nickel(<scp>ii</scp>) N,C-chelating benzothiazolyl NHC complexes: synthesis, characterization and application in catalytic C–C bond formation reactions. Dalton Transactions, 2016, 45, 7312-7319.	3.3	15
15	A zwitterionic 1D/2D polymer co-crystal and its polymorphic sub-components: a highly selective sensing platform for HIV ds-DNA sequences. Dalton Transactions, 2016, 45, 5092-5100.	3.3	39
16	A catch–release catalysis system based on supramolecular host–guest interactions. RSC Advances, 2016, 6, 23686-23692.	3.6	7
17	From Lithiumâ€Oxygen to Lithiumâ€Air Batteries: Challenges and Opportunities. Advanced Energy Materials, 2016, 6, 1502164.	19.5	296
18	Celebrating 50 Years of Chemistry in Singapore. ChemPlusChem, 2015, 80, 1192-1194.	2.8	0

#	Article	lF	Citations
19	Amorphous ruthenium nanoparticles for enhanced electrochemical water splitting. Nanotechnology, 2015, 26, 415401.	2.6	32
20	Ligand Effect and Control of <i>E</i> à€•and <i>Z</i> å€Selectivity in the Silverâ€Catalyzed Synthesis of 4â€Bromooxazolines. Advanced Synthesis and Catalysis, 2015, 357, 2485-2491.	4.3	12
21	Investigation on the Cyclability of Lithiumâ€Oxygen Cells in a Confined Potential Window using Cathodes with Preâ€filled Discharge Products. Chemistry - an Asian Journal, 2015, 10, 2182-2189.	3.3	10
22	Metal–Organic Frameworks via Emissive Metal arboxylate Zwitterion Intermediates. ChemPlusChem, 2015, 80, 1231-1234.	2.8	15
23	A Triazolylâ€Pyridineâ€Supported Cu ^l Dimer: Tunable Luminescence and Fabrication of Composite Fibers. ChemPlusChem, 2015, 80, 1235-1240.	2.8	22
24	Manganese Oxide Catalyst Grown on Carbon Paper as an Air Cathode for Highâ€Performance Rechargeable Zinc–Air Batteries. ChemPlusChem, 2015, 80, 1341-1346.	2.8	65
25	Utilizing Benign Oxidants for Selective Aerobic Oxidations Using Heterogenized Platinum Nanoparticle Catalysts. ChemPlusChem, 2015, 80, 1226-1230.	2.8	3
26	Elucidating Structure–Property Relationships in the Design of Metal Nanoparticle Catalysts for the Activation of Molecular Oxygen. ACS Catalysis, 2015, 5, 3807-3816.	11.2	26
27	Luminescent [Cu4I4] aggregates and [Cu3I3]-cyclic coordination polymers supported by quinolyl-triazoles. Dalton Transactions, 2015, 44, 6075-6081.	3.3	29
28	N-heterocyclic carbene complexes of Group 6 metals. Coordination Chemistry Reviews, 2015, 293-294, 292-326.	18.8	55
29	Pyrididine-Carboxylate Ligands as Double-Bridge Spacers in CulMetallacycles. European Journal of Inorganic Chemistry, 2015, 2015, 876-881.	2.0	10
30	Tellurium@Ordered Macroporous Carbon Composite and Freeâ€Standing Tellurium Nanowire Mat as Cathode Materials for Rechargeable Lithium†Tellurium Batteries. Advanced Energy Materials, 2015, 5, 1401999.	19.5	83
31	Nickel-Catalyzed Three-Component Domino Reactions of Aryl Grignard Reagents, Alkynes, and Aryl Halides Producing Tetrasubstituted Alkenes. Journal of the American Chemical Society, 2015, 137, 3189-3192.	13.7	115
32	Virtual Issue on Catalysis in Singapore. ACS Catalysis, 2015, 5, 4867-4868.	11.2	0
33	New solid-state Eu(<scp>iii</scp>)-containing metallo-supramolecular polymers: morphology control and optical wave-guiding properties. Journal of Materials Chemistry C, 2015, 3, 8992-9002.	5. 5	13
34	Aryl-BIAN-ligated silver(<scp>i</scp>) trifluoromethoxide complex. Dalton Transactions, 2015, 44, 19682-19686.	3.3	62
35	Spacer-Directed Selective Assembly of Copper Square or Hexagon and Ring-Stacks or Coordination Nanotubes. Inorganic Chemistry, 2015, 54, 6680-6686.	4.0	8
36	Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis, 2015, 5, 4643-4667.	11.2	1,022

3

#	Article	IF	CITATIONS
37	Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co _{0.55} Mn _{0.45}) _{0.99} O _{3â^Î} nanorod/graphene hybrid in alkaline media. Nanoscale, 2015, 7, 9046-9054.	5.6	86
38	Five Cu(<scp>i</scp>) and Zn(<scp>ii</scp>) clusters and coordination polymers of 2-pyridyl-1,2,3-triazoles: synthesis, structures and luminescence properties. CrystEngComm, 2015, 17, 3305-3311.	2.6	34
39	Highly emissive, solution-processable and dynamic Eu(<scp>iii</scp>)-containing coordination polymers. Chemical Communications, 2015, 51, 8656-8659.	4.1	19
40	Unlocking Inter―to Nonâ€Penetrating Frameworks Using Steric Influences on Spacers for CO ₂ Adsorption. Chemistry - an Asian Journal, 2015, 10, 2117-2120.	3.3	10
41	Isolation of first row transition metal-carboxylate zwitterions. RSC Advances, 2015, 5, 42978-42989.	3.6	11
42	Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn–air batteries. Chemical Communications, 2015, 51, 8841-8844.	4.1	104
43	Assembly of photoluminescent $[Cu \cdot sub \cdot n \cdot sub \cdot l \cdot sub \cdot n \cdot$	6.0	25
44	A thermally stable and reversible microporous hydrogen-bonded organic framework: aggregation induced emission and metal ion-sensing properties. Journal of Materials Chemistry C, 2015, 3, 11874-11880.	5.5	76
45	Structure and bonding of [(SIPr)AgX] (X = Cl, Br, I and OTf). Chemical Communications, 2015, 51, 17752-17755.	4.1	22
46	Unexpected synthesis of an Au ₂ In ₂ tetrametallatricyclic complex from α-aminophosphines and formation of Au–In–P and Ag–In–P nanomaterials. Dalton Transactions, 2015, 44, 16242-16246.	3.3	1
47	Co ₃ O ₄ nanoparticles grown on N-doped Vulcan carbon as a scalable bifunctional electrocatalyst for rechargeable zinc–air batteries. RSC Advances, 2015, 5, 75773-75780.	3.6	39
48	Cobalt sulfide nanoparticles impregnated nitrogen and sulfur co-doped graphene as bifunctional catalyst for rechargeable Zn†air batteries. RSC Advances, 2015, 5, 7280-7284.	3.6	42
49	A supramolecular recyclable catalyst for aqueous Suzuki–Miyaura coupling. RSC Advances, 2015, 5, 3590-3596.	3.6	23
50	Sulfur–carbon yolk–shell particle based 3D interconnected nanostructures as cathodes for rechargeable lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 1853-1857.	10.3	79
51	Co ₃ O ₄ nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale, 2015, 7, 1830-1838.	5.6	226
52	Potential of metal-free "graphene alloy―as electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 1795-1810.	10.3	133
53	Engineering Organic Macrocycles and Cages: Versatile Bonding Approaches. Chemistry - an Asian Journal, 2015, 10, 24-42.	3.3	43
54	Recent advances in Câ \in "S bond formation via Câ \in "H bond functionalization and decarboxylation. Chemical Society Reviews, 2015, 44, 291-314.	38.1	702

#	Article	IF	Citations
55	Molybdenum (0) and tungsten (0) carbonyl N-heterocyclic carbene complexes as catalyst for olefin epoxidation. Journal of Organometallic Chemistry, 2015, 775, 188-194.	1.8	17
56	Synthesis, characterization, and catalytic activity of heterometallic ion-pair Ni/Mn and Ni/Zn complexes. Journal of Coordination Chemistry, 2014, 67, 1219-1235.	2.2	6
57	Electrospun aggregation-induced emission active POSS-based porous copolymer films for detection of explosives. Chemical Communications, 2014, 50, 13785-13788.	4.1	87
58	A Three-Component 1D/2D â†' 2D Interpenetrated Coordination Network: Structure and Gas Adsorption Studies. Australian Journal of Chemistry, 2014, 67, 1391.	0.9	2
59	Carboxylate-rich hybrid ligands in Mn(ii) complexes as precursors for water oxidation reactions. Dalton Transactions, 2014, 43, 1821-1828.	3. 3	5
60	Stitching 2D Polymeric Layers into Flexible Interpenetrated Metal–Organic Frameworks within Single Crystals. Angewandte Chemie - International Edition, 2014, 53, 4628-4632.	13.8	62
61	Yb-doped WO3 photocatalysts for water oxidation with visible light. International Journal of Hydrogen Energy, 2014, 39, 4291-4298.	7.1	69
62	Cyclopentadienyl Molybdenum(II) N,C-Chelating Benzothiazole-Carbene Complexes: Synthesis, Structure, and Application in Cyclooctene Epoxidation Catalysis. Organometallics, 2014, 33, 2457-2466.	2.3	18
63	Copper-Catalyzed Trifluoromethylselenolation of Aryl and Alkyl Halides: The Silver Effect in Transmetalation. Organic Letters, 2014, 16, 524-527.	4.6	61
64	Magnetocaloric effect of a series of remarkably isostructural intermetallic [Ni ^{II} ₃ Ln ^{III}] cubane aggregates. Dalton Transactions, 2014, 43, 182-187.	3.3	25
65	Using electrospray ionisation mass spectrometry as a synthesis-targeting technique – An update on the chemistry of the platinum chalcogenide dimers [Pt2(μ2-E)2(PPh3)4] (E=S, Se). Inorganica Chimica Acta, 2014, 411, 199-211.	2.4	13
66	Enhancing multiphoton upconversion through energy clustering at sublattice level. Nature Materials, 2014, 13, 157-162.	27.5	528
67	Motorized Janus metal organic framework crystals. Chemical Communications, 2014, 50, 15175-15178.	4.1	54
68	Bent tritopic carboxylates for coordination networks: clues to the origin of self-penetration. CrystEngComm, 2014, 16, 7722-7730.	2.6	21
69	Influence of carbon pore size on the discharge capacity of Li–O ₂ batteries. Journal of Materials Chemistry A, 2014, 2, 12433-12441.	10.3	139
70	Photoresponsive Liquid Marbles and Dry Water. Langmuir, 2014, 30, 3448-3454.	3 . 5	45
71	A biomimetic photoelectrochemical device from a molecular heterometallic sodium–manganese water splitting catalyst. Inorganic Chemistry Frontiers, 2014, 1, 705-711.	6.0	4
72	Stoichiometric sensitivity and structural diversity in click-active copper(<scp>i</scp>) N,S-heterocyclic carbene complexes. Dalton Transactions, 2014, 43, 1305-1312.	3.3	18

#	Article	IF	Citations
73	A Near-Neutral Chloride Electrolyte for Electrically Rechargeable Zinc-Air Batteries. Journal of the Electrochemical Society, 2014, 161, A2080-A2086.	2.9	121
74	Synthesis, characterization and catalytic activity of a heterometallic Ni/Zn compound in the H/D exchange of salicylaldehyde. Mendeleev Communications, 2014, 24, 222-223.	1.6	0
75	Dual-Phase Spinel MnCo ₂ O ₄ and Spinel MnCo ₂ O ₄ /Nanocarbon Hybrids for Electrocatalytic Oxygen Reduction and Evolution. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12684-12691.	8.0	322
76	Key parameters in design of lithium sulfur batteries. Journal of Power Sources, 2014, 269, 111-116.	7.8	93
77	Transmetalation of a Dodecahedral Na ₉ Aggregate-Based Polymer: A Facile Route to Water Stable Cu(II) Coordination Networks. Inorganic Chemistry, 2014, 53, 7446-7454.	4.0	30
78	Effect of La-Doping on optical bandgap and photoelectrochemical performance of hematite nanostructures. Journal of Materials Chemistry A, 2014, 2, 19290-19297.	10.3	22
79	Novel Au/Laâ€6rTiO ₃ microspheres: Superimposed Effect of Gold Nanoparticles and Lanthanum Doping in Photocatalysis. Chemistry - an Asian Journal, 2014, 9, 1854-1859.	3.3	13
80	Magnetic Pd/Fe3O4 Composite: Synthesis, Structure, and Catalytic Activity. Australian Journal of Chemistry, 2014, 67, 1387.	0.9	3
81	The 4th Molecular Materials Meeting (M3) @ Singapore. Australian Journal of Chemistry, 2014, 67, 1365.	0.9	1
82	Dinuclear Cu(II) 1,2,3-Triazole-Bridged Complex with Ferromagnetic Coupling. Australian Journal of Chemistry, 2013, 66, 1029.	0.9	10
83	Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc–air battery. Electrochimica Acta, 2013, 114, 598-604.	5.2	134
84	Tuning Omniphobicity via Morphological Control of Metal–Organic Framework Functionalized Surfaces. Journal of the American Chemical Society, 2013, 135, 16272-16275.	13.7	33
85	Ambient arylmagnesiation of alkynes catalysed by ligandless nickel(ii). Chemical Communications, 2013, 49, 10121.	4.1	42
86	Trans [Oî€Re ^V â€"OH] core stabilised by chelating N-heterocyclic dicarbene ligands. Dalton Transactions, 2013, 42, 871-873.	3.3	12
87	Silver-catalysed intramolecular hydroamination of alkynes with trichloroacetimidates. Chemical Communications, 2013, 49, 9272.	4.1	44
88	Tuning the Zn(ii) coordination assembly by adjusting the spacers of 2-pyridylthiomethyl functionalized 1,2,3-triazoles. CrystEngComm, 2013, 15, 10451.	2.6	16
89	Dispersed Ru nanoclusters transformed from a grafted trinuclear Ru complex on SiO2 for selective alcohol oxidation. Dalton Transactions, 2013, 42, 12611.	3.3	15
90	Tuning the aspect ratio of NH ₂ -MIL-53(Al) microneedles and nanorodsvia coordination modulation. CrystEngComm, 2013, 15, 654-657.	2.6	78

#	Article	IF	Citations
91	Azide-bridged Cd(<scp>ii</scp>) 1D coordination polymer with Cd ₁₃ nano-crown-like cluster. CrystEngComm, 2013, 15, 650-653.	2.6	14
92	Synthesis and characterization of new trimetallic complexes with $\{Pt2Au(\hat{1}/4-S)2\}n+ (n=2, 3)$ cores containing C, N and N, N donor ligands. Inorganica Chimica Acta, 2013, 394, 146-151.	2.4	10
93	Cross-coupling of alkyl halides with aryl or alkyl Grignards catalyzed by dinuclear Ni(ii) complexes containing functionalized tripodal amine-pyrazolyl ligands. Dalton Transactions, 2013, 42, 5150.	3.3	30
94	Supergluing MOF liquid marbles. Chemical Communications, 2013, 49, 493-495.	4.1	36
95	Enhanced Emission and Analyte Sensing by Cinchonine Iridium(III) Cyclometalated Complexes Bearing Bent Diphosphine Chelators. Organometallics, 2013, 32, 2908-2917.	2.3	23
96	Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc–air batteries. Nanoscale, 2013, 5, 4657.	5.6	247
97	Cp*Rh-Based Heterometallic Metallarectangles: Size-Dependent Borromean Link Structures and Catalytic Acyl Transfer. Journal of the American Chemical Society, 2013, 135, 8125-8128.	13.7	208
98	"Click-and-click―– hybridised 1,2,3-triazoles supported Cu(i) coordination polymers for azide–alkyne cycloaddition. Dalton Transactions, 2013, 42, 9437.	3.3	54
99	Sodium cubane and double-cubane aggregates of hybridised salicylaldimines and their transmetallation to nickel for catalytic ethylene oligomerisation. Chemical Communications, 2013, 49, 4992.	4.1	16
100	Hybrid NS ligands supported Cu(i)/(ii) complexes for azide–alkyne cycloaddition reactions. Dalton Transactions, 2013, 42, 11319.	3.3	49
101	Probing the origin of in situ generated nanoparticles as sustainable oxidation catalysts. Dalton Transactions, 2013, 42, 12600.	3.3	10
102	Facile Selfâ€Assembly of Intermetallic [Ni ₂ Gd ₂] Cubane Aggregate for Magnetic Refrigeration. Chemistry - an Asian Journal, 2013, 8, 2943-2946.	3.3	22
103	Immobilization of [Pt ₂ (μ-S) ₂ (PPh ₃) ₄] on Polymeric Supports by Sulfide Alkylation and Phosphine Exchange Reactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 1508-1525.	1.6	2
104	The 3rd Molecular Materials Meeting (M3) @ Singapore. Australian Journal of Chemistry, 2013, 66, 993.	0.9	2
105	The 2nd Molecular Materials Meeting (M3@Singapore). Australian Journal of Chemistry, 2012, 65, 1191.	0.9	3
106	Redox tuning of two biological copper centers through non-covalent interactions: same trend but different magnitude. Chemical Communications, 2012, 48, 4217.	4.1	20
107	A novel structural rearrangement reaction of dialkylated derivatives of [Pt2(μ-S)2(PPh3)4] involving Pt–C bond formation. Dalton Transactions, 2012, 41, 12773.	3.3	3
108	1,1'-Bis(diphenylphosphino)ferrocene in functional molecular materials. Dalton Transactions, 2012, 41, 12655.	3.3	78

#	Article	IF	CITATIONS
109	General One-Step Self-Assembly of Isostructural Intermetallic Coll3LnIII Cubane Aggregates. Inorganic Chemistry, 2012, 51, 12059-12061.	4.0	24
110	Chelating Schiff base assisted azide-bridged Mn(ii), Ni(ii) and Cu(ii) magnetic coordination polymers. Dalton Transactions, 2012, 41, 13379.	3.3	34
111	First crystallographic elucidation of a high-valent molybdenum oxoN-heterocyclic carbene complex [CpMoVIO2(IBz)]2[Mo6O19]. Dalton Transactions, 2012, 41, 1454-1456.	3.3	24
112	Soluble Phosphorescent Iridium(III) Complexes from Cinchonine-Derived Ligands. Organometallics, 2012, 31, 553-559.	2.3	18
113	[Zn(phen)(O,N,O)(H2O)] and [Zn(phen)(O,N)(H2O)] with O,N,OÂisÂ2,6-dipicolinate and N,OÂisÂl-threoninate: synthesis, characterization, and biomedical properties. Journal of Biological Inorganic Chemistry, 2012, 17, 1093-1105.	2.6	14
114	Efficient Route to Organometallic Cage Formation via C–H Activation-Directed Muticomponent Assembly Accompanying Aromatic Guest Encapsulation. Organometallics, 2012, 31, 995-1000.	2.3	25
115	Facile formation and redox of benzoxazole-2-thiolate-bridged dinuclear Pt(ii/iii) complexes. Dalton Transactions, 2012, 41, 12568.	3.3	29
116	One-step entry to olefin-tethered N,S-heterocyclic carbene complexes of ruthenium with mixed ligands. Dalton Transactions, 2012, 41, 5988.	3.3	17
117	Zinc, cobalt and copper coordination polymers with different structural motifs from picolyl-triazole hybrid ligands. CrystEngComm, 2012, 14, 961-971.	2.6	33
118	N-heterocyclic carbene Pt(ii) complexes from caffeine: synthesis, structures and photoluminescent properties. Dalton Transactions, 2011, 40, 4402.	3.3	43
119	Complexation of $1,1\hat{a}\in^2$ -bis(diphenylphosphino)ferrocene dioxide (dppfO2) with 3d metals and revisit of its coordination to Pd(ii). Dalton Transactions, 2011, 40, 10725.	3.3	13
120	Nuclearity growth towards Ni(ii) cubane in self-assembly with 2-hydroxymethyl pyridine (hmpH) and 5-ethoxycarbonyl-2-hydroxymethyl pyridine (5-ehmpH). CrystEngComm, 2011, 13, 2915.	2.6	23
121	Lipid-bilayer-mimicking solid-state structures of Cu(ii) and Ni(ii) with I-tryptophan and I-tyrosine Schiff base derivatives. CrystEngComm, 2011, 13, 4228.	2.6	7
122	Phosphorescent Emitters from Natural Products: Cinchonine-Derived Iridium(III) Complexes. Organometallics, 2011, 30, 2137-2143.	2.3	15
123	Synthesis, characterization, and single-molecule metamagnetism of new Co(ii) polynuclear complexes of pyridine-2-ylmethanol. Dalton Transactions, 2011, 40, 10526.	3.3	52
124	Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation. Chemical Communications, 2011, 47, 10653.	4.1	52
125	Supramolecular assembly of a new series of copper-l-arginine Schiff bases. CrystEngComm, 2011, 13, 2114.	2.6	12
126	Magnetically Recoverable Magnetite/Gold Catalyst Stabilized by Poly(N-vinyl-2-pyrrolidone) for Aerobic Oxidation of Alcohols. Molecules, 2011, 16, 149-161.	3.8	14

#	Article	IF	CITATIONS
127	Molecular Materials Meeting (M3@Singapore). Australian Journal of Chemistry, 2011, 64, 1181.	0.9	3
128	Further studies on the chemistry of molybdenyl adducts of [Pt2(\hat{l} /4-S)2(PPh3)4]: Hydrolysis, condensation and ligand exchange processes. Inorganica Chimica Acta, 2011, 375, 142-149.	2.4	10
129	Further studies on the dialkylation chemistry of [Pt2(\hat{l} /4-S)2(PPh3)4] with activated alkyl halides RC(O)CH2X (X=Cl, Br). Inorganica Chimica Acta, 2011, 376, 255-263.	2.4	9
130	Nitrogenâ€Rich Azoles as Ligand Spacers in Coordination Polymers. Chemistry - an Asian Journal, 2011, 6, 292-304.	3.3	67
131	Syntheses and Structures of Ruthenium(II) N,Sâ€Heterocyclic Carbene Diphosphine Complexes and their Catalytic Activity towards Transfer Hydrogenation. Chemistry - an Asian Journal, 2011, 6, 1485-1491.	3.3	10
132	Iron(ii) complexes with functionalized amine-pyrazolyl tripodal ligands in the cross-coupling of aryl Grignard with alkyl halides. Dalton Transactions, 2011, 40, 8935.	3.3	27
133	Dinuclear platinum(II) sulfide–thiolate complexes [Pt2(μ-S)(μ-SR)(PPh3)4]+ containing fluorinated substituents and the identification of a Sâ∢ C6F5 Ï€ interaction in the crystal structure of [Pt2(μ-S)(μ-SCH2C6F5)(PPh3)4]BPh4·2C6H6. Inorganica Chimica Acta, 2011, 368, 6-12.	2.4	11
134	Spacer directed metallo-supramolecular assemblies of pyridine carboxylates. Coordination Chemistry Reviews, 2011, 255, 273-289.	18.8	78
135	Recent advances in metal catalysts with hybrid ligands. Coordination Chemistry Reviews, 2011, 255, 1991-2024.	18.8	149
136	Aqueous phenol oxidation catalysed by molybdenum and tungsten carbonyl complexes. Applied Catalysis A: General, 2011, 393, 269-274.	4.3	17
137	Ferrocenyl iminophosphine ligands in Pd-catalysed Suzuki couplings. Journal of Organometallic Chemistry, 2011, 696, 2928-2934.	1.8	22
138	Substituent-dependent structures and catalysis of benzimidazole-tethered N-heterocyclic carbene complexes of Ag(i), Ni(ii) and Pd(ii). Dalton Transactions, 2010, 39, 5231.	3.3	73
139	Cyclopentadienyl Molybdenum(II/VI) N-Heterocyclic Carbene Complexes: Synthesis, Structure, and Reactivity under Oxidative Conditions. Organometallics, 2010, 29, 1924-1933.	2.3	60
140	Dinuclear platinum complexes with designer thiolate ligands from the monoalkylation of [Pt2(\hat{l} /4-S)2(PPh3)4]. Inorganica Chimica Acta, 2010, 363, 3558-3568.	2.4	17
141	Influence of chain length on mono- versus di-alkylation in the reactivity of [Pt2(\hat{l}_4 -S)2(PPh3)4] towards \hat{l}_{\pm} , i‰-dihalo-n-alkanes; a synthetic route to platinum(II) i‰-haloalkylthiolate complexes. Inorganica Chimica Acta, 2010, 363, 25-32.	2.4	11
142	Synthesis and characterisation of [Pt2(μ-S)(μ-I)(PPh3)4]+ – A cationic iodo analogue of the metalloligand [Pt2(μ-S)2(PPh3)4]. Inorganica Chimica Acta, 2010, 363, 301-307.	2.4	12
143	The arylation of [Pt2(μ-S)2(PPh3)4]. Inorganica Chimica Acta, 2010, 363, 637-644.	2.4	17
144	Synthesis and structural characterisation of the lead–platinum sulfido aggregates [Pt2(μ-S)2(PPh3)4PbX2] (X=Br, I); promotion of rare tetrahedral geometry for lead(II). Inorganica Chimica Acta, 2010, 363, 1859-1863.	2.4	8

#	Article	IF	CITATIONS
145	Synthesis and characterisation of adducts of [Pt2(\hat{l} /4-S)2(PPh3)4] with organo-palladium and platinum-hydride substrates. Inorganica Chimica Acta, 2010, 363, 2387-2393.	2.4	11
146	N,S-Heterocyclic Carbene Complexes. Australian Journal of Chemistry, 2010, 63, 727.	0.9	17
147	Functionalized 1,2,3-triazoles as building blocks for photoluminescent POLOs (polymers of oligomers) of copper(i). Dalton Transactions, 2010, 39, 2631.	3.3	66
148	Crystallographic Elucidation of Chiral and Helical Cu(II) Polymers Assembled from a Heterodifunctional 1,2,3-Triazole Ligand. Crystal Growth and Design, 2010, 10, 1715-1720.	3.0	51
149	Must an N-Heterocyclic Carbene Be a Terminal Ligand?. Organometallics, 2010, 29, 2403-2405.	2.3	34
150	Crystallographic analysis of different water–halidecluster blends in cationic [(SNS)PdII] pincer complexes. CrystEngComm, 2010, 12, 226-233.	2.6	19
151	Structural Effects of Sodium Cations in Polynuclear, Multicubaneâ€Type Mixed Na–Ni Complexes. Angewandte Chemie - International Edition, 2010, 49, 4443-4446.	13.8	59
152	Crystallographic identification of an unusual homoleptic palladium citrate [Na(OH2)6]Â \cdot {[Na3(OH2)8]3[NaPd3(C6H4O7)3]2}Â \cdot (H2O) stabilised by intermetallic aggregation with sodium and heavy hydration. Dalton Transactions, 2010, 39, 9462.	3.3	6
153	[Pt2(î¼-SAz)(î¼-S)]2+ (SAz = azolium thiolate) dication as an unusual source for quadruply bridging sulfide in [Ag2Pt2(î¼-SAz)(î¼4-S)]3+. Dalton Transactions, 2010, 39, 2441.	3.3	16
154	Ruthenium(ii) N,S-heterocyclic carbene complexes and transfer hydrogenation of ketones. Dalton Transactions, 2010, 39, 10179.	3.3	42
155	Structures and Suzuki-Coupling of N-Heterocyclic Carbene Complexes of PdII with Coordinated Solvent and PPh3. Australian Journal of Chemistry, 2009, 62, 1047.	0.9	14
156	Benzothiazolin-2-ylidene and Azole Mixed-Ligand Complexes of Palladium. European Journal of Inorganic Chemistry, 2009, 2009, 4288-4297.	2.0	20
157	Dithiolate and diselenolate complexes [Pt2(μ-ECH2CHCH2E)(PPh3)4]2+ (E=S, Se): Synthesis, characterisation and mass spectrometric formation of the dichalcogenide species [Pt2(μ-E2)(PPh3)4]2+. Inorganica Chimica Acta, 2009, 362, 1194-1198.	2.4	10
158	Thallium(III) complexes of the metalloligands [Pt2(μ-S)2(PPh3)4] and [Pt2(μ-Se)2(PPh3)4]. Inorganica Chimica Acta, 2009, 362, 5237-5244.	2.4	8
159	Formation and structures of Pd(II) N,S-heterocyclic carbene-pyridyl mixed-ligand complexes. Journal of Organometallic Chemistry, 2009, 694, 332-338.	1.8	18
160	Structural and Nonlinear Optical Properties of Aligned Heterotrinuclear [Ru ^{II} â€(Spacer)â€M ^{II} â€(Spacer)â€Ru ^{II}] Complexes (M=Pd, Pt;) Tj ETQqC	0 0 3. ægBT	Overslock 10
161	Structures of Copper Complexes of the Hybrid [SNS] Ligand of Bis(2-(benzylthio)ethyl)amine and Facile Catalytic Formation of 1-Benzyl-4-phenyl- $1 < i > H < /i > -1,2,3$ -triazole through Click Reaction. Inorganic Chemistry, 2009, 48, 1207-1213.	4.0	75
162	Crystallographic Revelation of the Role of AlMe3 (in MAO) in Cr [NNN] Pyrazolyl Catalyzed Ethylene Trimerization. Organometallics, 2009, 28, 2935-2937.	2.3	81

#	Article	IF	Citations
163	Ligand effect on ethylene trimerisation with [NNN]-heteroscorpionate pyrazolyl Cr(III) catalysts. Dalton Transactions, 2009, , 9327.	3.3	44
164	Novel Pt(II) Mono- and Biscarbene Complexes: Synthesis, Structural Characterization and Application in Hydrosilylation Catalysis. Organometallics, 2009, 28, 1212-1220.	2.3	68
165	Formation and crystallographic elucidation of stable [4 + 2]-coordinate nickel(ii) N,S-heterocyclic carbene (NSHC) complexes. Dalton Transactions, 2009, , 1853.	3.3	34
166	Unexpected coordination difference in geometric-isomerism between N,S- and N,N-heterocyclic carbenes in cyclometallated platinum(ii). Chemical Communications, 2009, , 6831.	4.1	21
167	Isolation of cationic digold-frame with free carboxylic acid pendants. Dalton Transactions, 2009, , 5009.	3.3	13
168	Na+ and Ca2+ ion selective pyridylcarboxylate rings of Pd(II) and Pt(II). Dalton Transactions, 2009, , 5637.	3.3	22
169	Organobimetallic Rull–ReI 4-ethynylpyridyl complexes: structures and non-linear optical properties. Dalton Transactions, 2009, , 6192.	3.3	26
170	One-pot oxidation and protonation of a bridging sulfide and rare crystallographic evidence of a coordinated [SO] complex in [Pt2(\hat{l} /4-S2O2H)(PPh3)4]+. Chemical Communications, 2009, , 3416.	4.1	9
171	One-step formation of cyclometallated Au(III) N,S-heterocyclic carbene: crystallographic analysis. Dalton Transactions, 2009, , 7248.	3.3	17
172	Hydrogen Bonding in Crystalline Alcohol Solvates of the Platinum(II) Sulfido Complex [Pt2(μ-S)2(PPh3)4]. European Journal of Inorganic Chemistry, 2008, 2008, 5119-5124.	2.0	25
173	Benzimidazoliumâ€Pyrazoleâ€Palladium(II) Complexes: New and Efficient Catalysts for Suzuki, Heck and Sonogashira Reactions. Advanced Synthesis and Catalysis, 2008, 350, 2391-2400.	4.3	78
174	Isolation and crystallographic characterization of solvate- and anion-stabilized PCP pincer complexes of palladium(II). Journal of Organometallic Chemistry, 2008, 693, 1628-1635.	1.8	15
175	Spanning [Pt2(ν-S)2(PPh3)4] metalloligands with 1,4-dimercurated durene. Journal of Organometallic Chemistry, 2008, 693, 3711-3714.	1.8	4
176	Dinuclear sulfide–thiolate complexes [Pt2(μ-S)(μ-SR)(PPh3)4]+ as cationic metalloligands. Inorganica Chimica Acta, 2008, 361, 1908-1914.	2.4	21
177	Mono―and Dinuclear Palladium(II) N,Sâ€Heterocyclic Carbene Complexes with N Spacers and their Suzuki Coupling Activities. Chemistry - an Asian Journal, 2008, 3, 1649-1656.	3.3	29
178	Oligo- and Polymeric Pd ^{II} and Pt ^{II} Using Pyridyl Carboxylate Spacers for Topology Control. Inorganic Chemistry, 2008, 47, 6464-6474.	4.0	41
179	Highly Selective Chromium(III) Ethylene Trimerization Catalysts with [NON] and [NSN] Heteroscorpionate Ligands. Organometallics, 2008, 27, 4277-4279.	2.3	91
180	Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance. Optics Express, 2008, 16, 10701.	3.4	55

#	Article	IF	Citations
181	Palladium-free Suzuki–Miyaura cross-coupling at elevated pressures. Tetrahedron Letters, 2008, 49, 5620-5621.	1.4	40
182	Unusual Ligand Transformation Mediated by Chromium(III): Hydrolytic Disintegration of a [PNP] Hybrid Ligand with CH ₃ CN Insertion. Organometallics, 2008, 27, 4188-4192.	2.3	19
183	Formation of [PtPd2(μ3-X)2(P–P)(dppmX)2]2+ (X = S, Se; P–P = dppe, 2 × PPh3) aggregates through activation of the chalcogen-rich [PtX4] ring by a Pdl–Pdl bond. Dalton Transactions, 2008, , 5708.	3.3	8
184	Cobalt-catalyzed hydrogen desorption from the LiNH2–LiBH4 system. Dalton Transactions, 2008, , 2395.	3.3	56
185	Isolation of an [SNS]Pd(ii) pincer with a water ladder and its Suzuki coupling activity in water. Chemical Communications, 2008, , 3172.	4.1	52
186	Stepwise assembly of linearly-aligned Ruâ \in "Mâ \in "Ru (M = Pd, Pt) heterotrimetallic complexes with If-4-ethynylpyridine spacer. Dalton Transactions, 2008, , 2929.	3.3	32
187	Pd(ii) complexes with mixed benzothiazolin-2-ylidene and phosphine ligands and their catalytic activities toward C–C coupling reactions. Dalton Transactions, 2008, , 699-706.	3.3	33
188	Self-selected formation of a heteropolymetallic sandwich [Pd3Pt4($\hat{1}$ /43-S)4($\hat{1}$ /4-dppy)4(dppy)4][PF6]3 from dinuclear addition across the [Pt2] and [Pd2] cores (dppy = 2-(diphenylphosphino)pyridine). Dalton Transactions, 2008, , 6619.	3.3	9
189	Catalytic Annulation of Heterocycles via a Novel Redox Process Involving the Imidazolium Salt N-Heterocyclic Carbene Couple. Organometallics, 2008, 27, 3153-3160.	2.3	68
190	Benzenimidazole-Functionalized Imidazolium-Based N-Heterocyclic Carbene Complexes of Silver(I) and Palladium(II): Isolation of a Ag ₃ Intermediate toward a Facile Transmetalation and Suzuki Coupling. Organometallics, 2008, 27, 672-677.	2.3	88
191	General formation of trigonal-prismatic [Ag6X5(dppf)3]+ (X = Cl, Br, I) through an unusual ligand migration from NiX2(dppf) to AgOTf. Chemical Communications, 2007, , 4221.	4.1	24
192	Stable diplatinum complexes with functional thiolato bridges from dialkylation of [Pt2(Âμ-S)2(P–P)2] [P–P = 2 × PPh3, Ph2P(CH2)3PPh2]. Dalton Transactions, 2007, , 4008.	3.3	24
193	Dinuclear PCP pincer complexes from Lewis acidic [Pd(OTf)(PCP)] and basic [Pd(4-Spy)(PCP)] (OTf =) Tj ETQq1	1 0,78431 3.3	4 rgBT /Over
194	Pd(ii) complexes of N,S-heterocyclic carbenes with pendant and coordinated allyl function and their Suzuki coupling activities. Dalton Transactions, 2007, , 3952.	3.3	42
195	Assembly of gold rings and chains with pyridyl carboxylate as directional spacer. Chemical Communications, 2007, , 2225.	4.1	29
196	Chromium(iii) catalysed ethylene tetramerization promoted by bis(phosphino)amines with an N-functionalized pendant. Dalton Transactions, 2007, , 3493.	3.3	64
197	A single-molecular pathway from heterometallic MMâ \in 2 (M = Baii, Mnii; Mâ \in 2 = Criii) oxalato complexes to intermetallic composite oxides. Journal of Materials Chemistry, 2007, 17, 1002-1006.	6.7	37
198	Metal Unsaturation and Ligand Hemilability in Suzuki Coupling. Accounts of Chemical Research, 2007, 40, 676-684.	15.6	181

#	Article	IF	Citations
199	A Strange Nickel(I)â-'Nickel(0) Binuclear Complex and Its Unexpected Ethylene Oligomerization. Organometallics, 2007, 26, 2950-2952.	2.3	26
200	Open Platinum Aggregate Frameworks with Overhead Dithiolate Bridges. European Journal of Inorganic Chemistry, 2007, 2007, 4958-4964.	2.0	15
201	Tuning the sulfur–heterometal interaction in organolead(IV) complexes of [Pt2(μ-S)2(PPh3)4]. Journal of Organometallic Chemistry, 2007, 692, 4933-4942.	1.8	11
202	Suzuki coupling catalyzed by a homoleptic Pd(I)–Pd(I) solvento complex. Journal of Organometallic Chemistry, 2007, 692, 5690-5696.	1.8	29
203	Pressureâ \in Assisted Heteroâ \in and Homodialkylation of Sulfide in [Pt $<$ sub $>2sub>(1\frac{4}{4}6\inS)<sub>2sub>(2\frac{1}{4}6\inS)<sub>2sub>(3\frac{1}{4}6\inS)<sub>2sub>30\inPt<sub>2sub>31\inPt<sub>32\inSub>33\inSub>33$	3.3	8
204	A structurally characterized Ni–Al methyl-bridged complex with catalytic ethylene oligomerization activity. Chemical Communications, 2006, , 1319.	4.1	44
205	1,1 -P/O-Ferrocenyl Ligands in Palladium-Catalyzed Suzuki Coupling of Aryl Chlorides. Organometallics, 2006, 25, 1199-1205.	2.3	69
206	Convenient Entry to Mono- and Dinuclear Palladium(II) Benzothiazolin-2-ylidene Complexes and Their Activities toward Heck Coupling. Organometallics, 2006, 25, 5105-5112.	2.3	94
207	Stabilization of Nickel(0) by Hemilabile P,N-Ferrocene Ligands and Their Ethylene Oligomerization Activities. Organometallics, 2006, 25, 4878-4882.	2.3	88
208	Silver decoration of a palladacycle through "spacer–guest―interaction. Inorganica Chimica Acta, 2006, 359, 3435-3439.	2.4	14
209	Sulfide-bridged aggregates from the metalloligand [Pt2(\hat{l} /4-S)2(PPh3)4] and \hat{l}^2 -diketonate complexes of cobalt(II) and zinc(II). Inorganica Chimica Acta, 2006, 359, 680-684.	2.4	14
210	Heterobimetallic platinum–bismuth aggregates derived from [Pt2(μ-S)2(PPh3)4]. Inorganica Chimica Acta, 2006, 359, 221-227.	2.4	10
211	â€~Synthetic prospecting' using an electrospray ionisation mass spectrometry directed survey of the alkylation and arylation chemistry of [Pt2(î¼-S)2(PPh3)4]. Inorganica Chimica Acta, 2006, 359, 3440-3450.	2.4	34
212	Protagonists in chemistry. Inorganica Chimica Acta, 2006, 359, 3417-3419.	2.4	0
213	Synthesis and X-ray structures of rhenium(I) carbonyl aminoalkoxide and aminocarboxylate complexes. Inorganica Chimica Acta, 2006, 359, 3754-3762.	2.4	17
214	Complexes with the fac-{M(CO)3}+ (M=99mTc, Re) moiety and long alkyl chain ligands as Lipiodol surrogates. Inorganica Chimica Acta, 2006, 359, 4087-4094.	2.4	24
215	Combinative use of high-pressure, metal-templating and sulfur-nucleophilicity towards dithiacyclophane synthesis and its complex intermediates. Journal of Organometallic Chemistry, 2006, 691, 349-355.	1.8	15
216	Methylation of $[Pt2(\hat{1}/4-SR)(\hat{1}/4-S)(PPh3)4]$: En Route to Mixed-Thiolato Bridged Complexes. Chemistry - an Asian Journal, 2006, 1, 264-272.	3.3	26

#	Article	IF	Citations
217	Moderating the nucleophilicity of the sulfide ligands in the dinuclear {Pt2S2} metalloligand system using triphenylarsine. Journal of Organometallic Chemistry, 2006, 691, 2827-2838.	1.8	12
218	Inter- and hetero-metallic assembly of palladium sulfide aggregates: crystal and molecular structures of [InPd2Cl3(dppf)2(ν3-S)2]·2CH2Cl2. Journal of Organometallic Chemistry, 2005, 690, 990-997.	1.8	10
219	Ethylene Oligomerization at Coordinatively and Electronically Unsaturated Low-Valent Nickel. Angewandte Chemie - International Edition, 2005, 44, 7560-7564.	13.8	43
220	Crystal Structures and Characterizations of (Nitrato-O)(Nitrato-O,O′)(η6-Hexamethylbenzene)Ruthenium(II) and Di(Trifluoroacetato-O)(H2O-O)(η6-Hexamethylbenzene) Ruthenium(II). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2005, 35, 743-746.	0.6	3
221	Syntheses and ligand interconversions of copper(ii) derivatives of the metalloligand [Pt2($\hat{A}\mu$ -S)2(PPh3)4]. Dalton Transactions, 2005, , 2780.	3.3	12
222	Coordination chemistry of the metalloligand [Pt2(μ-S)2(PPh3)4] with nickel(II) complexes – an electrospray mass spectrometry directed synthetic study. Inorganica Chimica Acta, 2004, 357, 1152-1160.	2.4	13
223	An electrospray mass spectrometry-directed survey of the coordination chemistry of the metalloligand $[Pt2(\hat{l}/4-S)2(PPh3)4]$ with platinum(II) and palladium(II) chloride substrates: influence of metalâ \in 0 ligand lability on product type. Inorganica Chimica Acta, 2004, 357, 2081-2090.	2.4	23
224	Suzuki cross-coupling in aqueous media catalyzed by a $1,1\hat{a}\in^2$ -N-substituted ferrocenediyl Pd(II) complex. Journal of Organometallic Chemistry, 2004, 689, 18-24.	1.8	40
225	Chloride substitution of [CpRu(dppf)Cl] with sulfur-containing ligands. Journal of Organometallic Chemistry, 2004, 689, 1444-1451.	1.8	17
226	Coordination polymers and supramolecular structures in Ag(I)triflate–dppf systems (dppf=1,1′-bis(diphenylphosphino)ferrocene). Journal of Organometallic Chemistry, 2004, 689, 1746-1756.	1.8	35
227	Synthesis and structural characterization of mixed carbene-carboxylate complexes of palladium(II). Journal of Organometallic Chemistry, 2004, 689, 1766-1770.	1.8	33
228	Comparative reactivity studies of dppf-containing CpRull and (C6Me6)Rull complexes towards different donor ligands (dppf=1,1′-bis(diphenylphosphino)ferrocene). Journal of Organometallic Chemistry, 2004, 689, 1978-1990.	1.8	41
229	Constructing homo- and hetero-metallic molecular topologies using pyridylcarboxylates as spacers: preparation of a half-ring complex with active coordination sites. Dalton Transactions, 2004, , 3389.	3.3	23
230	Crystallographic Characterization of a Palladium(II) Metallamacrocycle Supported by an Amino-Functionalized Ferrocene and Its Use as an Efficient Suzuki-Coupling Catalyst. Organometallics, 2004, 23, 3603-3609.	2.3	46
231	Efficient Suzuki Coupling of Aryl Chlorides Catalyzed by Palladium(0) with a P,N Heteroligand and Isolation of Unsaturated Intermediates. Organometallics, 2004, 23, 4342-4345.	2.3	57
232	Structural dynamics and ligand mobility in carboxylate and dithiocarbamate complexes of Ru(II) containing 1,1′-bis(diphenylphosphino)ferrocene (dppf). Journal of Organometallic Chemistry, 2003, 688, 100-111.	1.8	30
233	Bimetallic complexes supported by bis(diphenylphosphino)methane anti and syn to the Mnî—,Pd bonds. Inorganica Chimica Acta, 2003, 350, 86-92.	2.4	6
234	Coordination chemistry of the [Pt2(μ-S)2(PPh3)4] metalloligand with π-hydrocarbon derivatives of d6 ruthenium(II), osmium(II), rhodium(III) and iridium(III). Journal of Organometallic Chemistry, 2003, 679, 24-31.	1.8	15

#	Article	IF	CITATIONS
235	Heterometallic multinuclear Ptî—,M (M=Au, Ag) structural assemblies from dinuclear [Pt2(Pî—,P)2(Î1/4-S)2] (Pî—,P=2PPh3, dppf). Journal of Organometallic Chemistry, 2003, 682, 73-78.	1.8	21
236	Electrospray mass spectrometric investigation of the reactivity of the sulfide centers in [Pt2(\hat{l} /4-S)2(PPh3)4] towards organic dihalides and the catalytic potential of this complex in the syntheses of organosulfur materials. Journal of Molecular Catalysis A, 2003, 204-205, 267-277.	4.8	22
237	Unusual Coordination Assemblies from Platinum(II) Thienyl and Bithienyl Complexes. Inorganic Chemistry, 2003, 42, 7290-7296.	4.0	51
238	Interpolymetallic Assembly of d8â^d10Sulfide Aggregates from [Pt2(PPh3)4(ν-S)2] and Group 12 Metals. Inorganic Chemistry, 2003, 42, 8481-8488.	4.0	24
239	Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion. Materials Letters, 2003, 57, 3282-3286.	2.6	74
240	Ligand Functionalization, Reactivity, and Transformation at the Selenide Centers of $[Pt2(\hat{1}/4-Se)2(PPh3)4]$ with Organic Halides. Organometallics, 2002, 21, 2944-2949.	2.3	28
241	Synthetic, Structural, Electrochemical, and Theoretical Studies of Heterometallic Aggregates with a [Pt2(ν-S)2M] Core (M = Hg, Au). Inorganic Chemistry, 2002, 41, 6838-6845.	4.0	15
242	Organometallic Radical-Initiated Carbonâ [^] Sulfur Bond Cleavage and Carbonâ [^] Carbon Coupling in Dithiocarbamate and Thiocarbenoid Cyclopentadienylchromium Complexes. Organometallics, 2002, 21, 4408-4414.	2.3	22
243	Metal Scrambling in the Trinuclear {Pt2Se2M} (M = Pt, Pd, Au) System Using an Electrospray Mass Spectrometry (ESMS) Directed Synthetic Methodology; Isolation and Crystallographic Characterization of {Pt2(l^4 3-Se)2(PPh3)4[Pt(cod)]}{PF6}2and {Pt(l^4 3-Se)2(PPh3)2[Pt(cod)]2}{PF6}2(cod =) 1	j t roq1 1	0.9 84314
244	Formation of hydrogenated amorphous carbon films from polymer pyrolysis. Applied Physics A: Materials Science and Processing, 2002, 74, 317-319.	2.3	6
245	Synthesis, X-ray structures, and cytotoxicity of rhenium(I) carbonyl 2-(dimethylamino)ethoxide complexes. Polyhedron, 2002, 21, 1991-1999.	2.2	38
246	Tricarbonylrhenium(I) complexes of phosphine-derivatized amines, amino acids and a model peptide: structures, solution behavior and cytotoxicity. Journal of Organometallic Chemistry, 2002, 650, 123-132.	1.8	78
247	Isolation and structural characterization of some stable Pd(II) carboxylate complexes supported by 1,1′-bis(diphenylphosphino) ferrocene (dppf). Journal of Organometallic Chemistry, 2002, 658, 159-168.	1.8	16
248	Nucleophilicity of the selenide ligands in [Pt2(\hat{l} /4-Se)2(PPh3)4]. Molecular assembly of a novel {In2Pt4Se6} core. Journal of Organometallic Chemistry, 2002, 659, 92-94.	1.8	10
249	Probing the Lewis basicity of the metalloligand [Pt2(\hat{l} /4-Se)2(PPh3)4] on tin substrates by electrospray mass spectrometry. Dalton Transactions RSC, 2001, , 315-321.	2.3	24
250	Diphosphine as an Overhead Bridge across a Heterometallic Mâ^'M  Bond. A Flexible Cluster System in (Pâ^'P)AuMn2(CO)7(μ-PPh2) that Accommodates All Common Diphosphines. Organometallics, 2001, 20, 3250-3254.	2.3	10
251	Palladium(II) phosphine thiocarboxylates. Structures of cis-Pd(κS-SOCMe)2(dppf) [dppf=1,1′-bis(diphenylphosphino)ferrocene] and trans-Pd(κS-SOCMe)2(PPh3)2. Journal of Organometallic Chemistry, 2001, 637-639, 757-761.	1.8	12
252	Decoration of activated carbon nanotubes with copper and nickel. Carbon, 2000, 38, 363-372.	10.3	281

#	Article	IF	CITATIONS
253	Amine-oxide-mediated oxidative methanolysis of metal $\hat{a}\in \hat{b}$ metal bonds in [MM $\hat{a}\in \hat{b}$ (CO)10] (M=Mn, Re; M $\hat{a}\in \hat{b}$ 2=Re) and [Os3(CO)12]: crystal structure of fac-[Re{OC(O)OMe}(CO)3(\hat{b} 2-dppf)]. Polyhedron, 2000, 19, 641-647.	2.2	12
254	Structural, Dynamic, and Theoretical Studies of [AunPt2(PPh3)4($\hat{1}\frac{1}{4}$ -S)2-n($\hat{1}\frac{1}{4}$ 3-S)nL][PF6]n [n = 1, L = PPh3; n = 2, L = Ph2PCH2PPh2, (C5H4PPh2)2Fe]. Inorganic Chemistry, 2000, 39, 5299-5305.	4.0	31
255	Fragmentation pathways of [Re2(μ-OR)3(CO)6]â^' (Râ€=â€H, Me) and ligand exchange reactions with oxyge donor ligands, investigated by electrospray mass spectrometry â€. Dalton Transactions RSC, 2000, , 3197-3203.		14
256	Ligand-stabilization of an unusual square-based pyramidal geometry of Cd(II) and Zn(II) in an heterometallic {MPt2S2} core (Mâ€=â€Cd, Zn). Dalton Transactions RSC, 2000, , 1027-1031.	2.3	16
257	Ligand exchange reactions of [Re2(μ-OR)3(CO)6]â^ (Râ€=â€H, Me) with sulfur, selenium, phosphorus and nitrogen donor ligands, investigated by electrospray mass spectrometry â€. Dalton Transactions RSC, 2000, , 3204-3211.	2.3	17
258	Formation and structural relationship of electroactive PtII–HgII polymetallic sulfide aggregates. Dalton Transactions RSC, 2000, , 2901-2908.	2.3	16
259	Catalytic dechlorination of chlorobenzenes: effect of solvent on efficiency and selectivity. Journal of Molecular Catalysis A, 1999, 144, 397-403.	4.8	26
260	Room-temperature hydrodebromination of 4,4′-dibromobiphenyl catalyzed by 1,1′-bis(diphenylphosphino)ferrocene complexes of palladium. Journal of Molecular Catalysis A, 1998, 132, 223-229.	4.8	27
261	Broadband optical limiting with multiwalled carbon nanotubes. Applied Physics Letters, 1998, 73, 3632-3634.	3.3	215
262	From Aggregates to Clusters. Facile Formation of Hetero-Metalâ^'Metal Bonds through Reductive Desulfurization by CO in a Decapacitative Transformation of a {Pt2MS2} Tbp Frame to a {Pt2MS} Tetrahedral Core (M = Ag, Cu, and Ru). Journal of the American Chemical Society, 1997, 119, 11006-11011.	13.7	35
263	Debromination of 1,4-Dibromobenzene and 4,4′-Dibromobiphenyl: A Model for Cleansing of PCBs. Environmental Monitoring and Assessment, 1997, 44, 481-485.	2.7	2
264	Complete debromination of polybrominated benzenes at room temperature catalyzed by palladium metallocenyl diphosphine complexes. Journal of Molecular Catalysis A, 1997, 126, L83-L88.	4.8	21
265	[Pt2(PPh3)4(\hat{l}_4 -S)2] as a metalloligand towards main-group lewis acids. Evidence of a sulfide-linked {BiPt4} aggregate by 1/2 addition on BiCl3. Polyhedron, 1996, 15, 1737-1741.	2.2	18
266	High-performance liquid chromatography of the coordination isomers of triphenylphosphine-substituted homo- and hetero-bimetallic carbonyl complexes of manganese and rhenium. Journal of Chromatography A, 1996, 740, 231-236.	3.7	5
267	High-Performance Liquid Chromatography of Group 6 Dimetal Decacarbonyl Complexes Singly-Bridged by Diphosphine Ligands. Journal of Liquid Chromatography and Related Technologies, 1994, 17, 3671-3680.	1.0	7
268	Nitrato displacement in [Ag2(NO3)2(μ-dppf)2]. Molecular structure of a homoleptic dppf complex, [Ag2(μ-dppf)(dppf)2] (PF6)2 (dppf = 1,1′-bis(diphenylphosphino)ferrocene). Journal of Organometallic Chemistry, 1994, 464, 113-119.	1.8	30
269	Synthesis of MO(η2-dppf)2 (M  Pd, Pt; dppf  Fe(C5H4PPh2)2) and their reactions with Fe3(η43-S)2(CO)9 are elemental sulfur. Journal of Organometallic Chemistry, 1994, 483, 17-20.	nd 1.8	20
270	X-Ray photoelectron spectroscopic characterization of [{Pt(PPh3)2(µ3-S)}2PtCl2], [{Pt2(PPh3)4(µ3-S)2Cu}2(µ-dppf)][PF6]2[dppf = Fe (C5H4PPh2)2] and other heterometallic aggregates derived from [{Pt(PPh3)2(µ-S)}2]. Journal of the Chemical Society Dalton Transactions, 1994, , 3177-3182.	1.1	45

#	Article	IF	CITATIONS
271	Promotion of tetrahedral copper(I) dimers by chelation of $1,1\hat{a}\in^2$ -bis(diphenylphosphino)ferrocene (dppf). Crystal structures of [{CU(µ-X)(dppf-P,Pâ \in^2)}2](X = O2CH, I or NO3). Journal of the Chemical Society Dalton Transactions, 1994, , 3451-3458.	1.1	36
272	Thermal analysis of conducting polymers. Part 3. Isothermal thermogravimetry of doped and pristine polyaniline. Thermochimica Acta, 1993, 225, 75-83.	2.7	10
273	Substituted metal carbonyls. Journal of Organometallic Chemistry, 1993, 454, 205-209.	1.8	18
274	Thermal Analysis of Electroactive Polymers based on Aniline and its Derivatives. Journal of Thermal Analysis, 1993, 39, 177-185.	0.6	17
275	Substituted metal carbonyls. Journal of Organometallic Chemistry, 1993, 448, 131-137.	1.8	8
276	Dalton communications. Synthesis and structural characterization of an Auâ \in "P linked chain polymer. The molecular structure of two pseudo-polymorphic forms of [{AuCl(µ-dppf)}n][dppf = 1,1â \in 2-bis(diphenylphosphino)ferrocene]. Journal of the Chemical Society Dalton Transactions, 1993, , 3629-3630.	1.1	39
277	Substituted metal carbonyls. Part 21. $[M(CO)5(dppf-P)][M = Cr, Mo or W; dppf = Fe(C5H4PPh2)2]$ as a metalloligand in heteropolymetallic aggregates of AuI, PdlIand PtII. Crystal and molecular structures of $[PtCl2\{(\hat{A}\mu-dppf)W(CO)5\}2]$ and $[Mo(CO)5(dppf-P)]$. Journal of the Chemical Society Dalton	1.1	42
278	Substituted metal carbonyls. Part 24. Heteropolymetallic oligomers [(OC)xM′(µ-L–L)M(CO)4(µ-L–L)M′(CO)x] and [(OC)5Mn–Mn(CO)4(µ-L–L)M(CO)4(µ-L–L)(OC)4Mn–Mn(CO)5][M = Cr, Mo or W; M′ = Cr, Mo, W Fe (x = 4); L–L = Fe(C5H4PPh2)2or Ph2P(CH2)mPPh2(m = 2 or 3)], with metal carbonyl and diphosphine	(x1=15) or	17
279	repeating units. Journal of the Chemical Society Dalton Transactions, 1993, , 2697-2702. Methoxylation of the Re–Re bond in [Re2(CO)10] by methanol under ambient conditions. Journal of the Chemical Society Dalton Transactions, 1992, , 423-426.	1.1	26
280	Photochemical reaction of Rh2(CO)4($1\frac{1}{4}$ -TPP)(TPP=tetraphenyl-porphyrinato) with pyridine (Py) in benzene. Generation of a mononuclear rhodium(II) porphyrin radical complex Rh(TPP)(Py). Transition Metal Chemistry, 1992, 17, 280-282.	1.4	3
281	High-Performance Liquid Chromatographic Separation of Metal Carbonyl Complexes Substituted with Bridging and Chelating $1,1\hat{a}\in^2$ -Bis(Diphenylphosphino)Ferrocene. Journal of Liquid Chromatography and Related Technologies, 1991, 14, 2079-2087.	1.0	4
282	Substituted metal carbonyls. Thermochimica Acta, 1991, 178, 287-293.	2.7	9
283	Metalloporphyrin-catalyzed hydroxylation of cyclohexane with molecular oxygen. Journal of Molecular Catalysis, 1991, 70, 247-257.	1.2	35
284	Substituted metal carbonyls. Journal of Organometallic Chemistry, 1991, 407, 353-357.	1.8	24
285	High-performance liquid chromatographic separation of heterometallic 1,1′-bis(diphenylphosphino)ferrocene-substituted metal carbonyls. Journal of Chromatography A, 1991, 538, 492-496.	3.7	5
286	Substituted metal carbonylsî—,XVIII. rhenium 1,1′-bis(diphenylphosphino)ferrocene (DPPF) complexes derived from [Re2(CO)9]. Crystal structures of two isomorphous pentametallic [M2(CO)9]2(μ-dppf) (M î—») Tj E	⊉Q q000	nggBT /Over
287	Poly(m-phenylenediamine): Synthesis and characterization by X-ray photoelectron spectroscopy. European Polymer Journal, 1991, 27, 1303-1308.	5.4	51
288	Entrapping of organic wastes by coordination clathrates. Environmental Monitoring and Assessment, 1991, 19, 145-150.	2.7	0

#	Article	IF	CITATIONS
289	In search of a recyclable sulphur dioxide sponge?a new look at an old system. Environmental Monitoring and Assessment, 1991, 19, 151-155.	2.7	0
290	X-Ray Photoelectron Spectroscopic Studies of Polyquinazolones: An Assessment of the Degree of Cyclization. Polymer Journal, 1990, 22, 883-892.	2.7	9
291	Substituted metal carbonyls XV. Crystal and molecular structures of two isomorphous singly diphosphine-bridged complexes (OC)5M(ν-dppf)M(CO)5Â-CH2Cl2 (M = Cr, Mo; dppf = (Ph2PC5H4)2Fe). Journal of Organometallic Chemistry, 1990, 397, 29-39.	1.8	37
292	Substituted metal carbonylsâ€"XIV. Polynuclear heterometallic complexes of Cr, Mo, W and Mn supported by singly-bridging 1,1′-bis(diphenylphosphino)ferrocene. Polyhedron, 1990, 9, 2305-2308.	2.2	17
293	Substituted metal carbonyls XII. Synthesis of Fe(CO)4(\hat{l} -1-dppf) (dppf = (Ph2PC5H4)2Fe) and its conversion into Fe2(CO)8(\hat{l} -4-dppf) and (CO)4Fe(\hat{l} -4-dppf)Mo(CO)5. Journal of Organometallic Chemistry, 1990, 381, 121-125.	1.8	42
294	Solid-state thermolysis of trans-diamminenickel(ii) catena-tetra- \hat{l} /4-cyanonickelate(II)clathrates and their degradation intermediates. Thermochimica Acta, 1990, 167, 57-64.	2.7	3
295	Substituted metal carbonyls. Part 8. Group 6 dimetal decacarbonyls with singly bridging long-backbone diphosphines. Inorganica Chimica Acta, 1989, 158, 5-6.	2.4	16
296	Substituted metal carbonyls. Part 9. Solution and solid-state decompositions of diphosphine-monobridged molybdenum carbonyl dimers. Inorganica Chimica Acta, 1989, 160, 53-57.	2.4	10
297	Thermal degradation of transition metal carbonyl complexes. Thermochimica Acta, 1989, 145, 179-187.	2.7	5
298	X. Thermogravimetric and quantitative studies of the oxidative decarbonylation of tungsten hexacarbonyl. Journal of Organometallic Chemistry, 1989, 373, 221-228.	1.8	11
299	Substituted metal carbonyls XI. 1,1′-Bis(diphenylphosphino)ferrocene — a bridging, chelating and unidentate ligand in the synthesis of M2(CO)10(î¼-Pî—,P), M(CO)4(î-2-Pî—,P) and M(CO)5(î-1-Pî—,P) (where M =	= C 1, \$ /10,)	Tj 1514Q q1 1 ()
300	Solvent compatible cobalt ion species as additives to polyimides. Journal of Materials Science, 1989, 24, 557-561.	3.7	2
301	The Isolobal Theory and Organotransition Metal Chemistryâ€"Some Recent Advances. Journal of Coordination Chemistry, 1989, 20, 311-330.	2.2	5
302	Thermal degradation of transition metal carbonyl complexes. Part II. Journal of Thermal Analysis, 1988, 34, 121-133.	0.6	8
303	Simple route to trigonal and dinuclear diimine substituted silver(I) phosphine complexes. Inorganica Chimica Acta, 1988, 149, 157-158.	2.4	11
304	Substituted metal carbonyls. Part 5. Convenient syntheses of some group 6 phosphine and pyridine substituted penta- and tetra-carbonyls and isolation of the singly bridging 1,2-bis(4-pyridyl)ethylene dimetal decacarbonyl complexes. Inorganica Chimica Acta, 1988, 143, 3-5.	2.4	16
305	Substituted metal carbonyls. Part 7. Direct route to group 6 tricarbonyl complexes with tris(2-chloroethyl) phosphite as ligand. Inorganica Chimica Acta, 1988, 149, 169-170.	2.4	5

ANDY T S HOR

#	Article	IF	CITATIONS
307	Thermal degradation of the transition metal carbonyl complexes. Journal of Thermal Analysis, 1987, 32, 1115-1126.	0.6	15
308	Substituted metal carbonyls. Journal of Organometallic Chemistry, 1987, 331, 23-28.	1.8	33
309	Substituted metal carbonyls. Part 2. Facile syntheses of mixed-ligand tricarbonyl complexes of chromium, molybdenum and tungsten. Inorganica Chimica Acta, 1987, 128, L3-L4.	2.4	20
310	Substituted metal carbonyls. Journal of Organometallic Chemistry, 1987, 319, 213-217.	1.8	37
311	Chemistry of platinum sulphido-complexes. Part 4. Dimeric Âμ-alkyl-sulphido-complexes: crystal and molecular structures of [Pt2(Âμ-S)-(Âμ-SMe)(PPh3)4]PF6Â-MeOH and cis-[Pt2(Âμ-SMe)2(NO2)2(PPh3)2]. Journal of the Chemical Society Dalton Transactions, 1984, , 2645-2651.	1.1	62
312	Synthesis and characterisation of [Ag2Pt4($\hat{l}\frac{1}{4}$ -S)4(PPh3)8](BF4)2 \hat{A} · 0.25CHCl3. Journal of Organometallic Chemistry, 1983, 256, C15-C18.	1.8	38
313	Chemistry of platinum sulphido-complexes. Part 3. Crystal and molecular structure of tetrasulphido[1,2-bis(diphenylphosphino)ethane]platinum(II) and a study of its bonding and reactions. Journal of the Chemical Society Dalton Transactions, 1983, , 1325.	1.1	18