List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12127601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linking litter decomposition to soil physicochemical properties, gas transport, and land use. Soil Science Society of America Journal, 2022, 86, 34-46.	2.2	3
2	Physical characterization of glacial rock flours from fjord deposits in South Greenland–Toward soil amendment. Soil Science Society of America Journal, 2022, 86, 407-422.	2.2	4
3	Water repellency prediction in highâ€organic Greenlandic soils: Comparing vis–NIRS to pedotransfer functions. Soil Science Society of America Journal, 2022, 86, 643-657.	2.2	6
4	Estimating Atterberg limits of soils from hygroscopic water content. Geoderma, 2021, 381, 114698.	5.1	16
5	Linking water vapor sorption to water repellency in soils with high organic carbon contents. Soil Science Society of America Journal, 2021, 85, 1037-1049.	2.2	4
6	Soil–air phase characteristics: Response to texture, density, and land use in Greenland and Denmark. Soil Science Society of America Journal, 2021, 85, 1534-1554.	2.2	3
7	Estimating Atterberg limits of soils from reflectance spectroscopy and pedotransfer functions. Geoderma, 2021, 402, 115300.	5.1	2
8	Moisture-dependent Water Repellency of Greenlandic Cultivated Soils. Geoderma, 2021, 402, 115189.	5.1	12
9	Clay content and mineralogy, organic carbon and cation exchange capacity affect water vapour sorption hysteresis of soil. European Journal of Soil Science, 2020, 71, 204-214.	3.9	28
10	Predicting glyphosate sorption across New Zealand pastoral soils using basic soil properties or Vis–NIR spectroscopy. Geoderma, 2020, 360, 114009.	5.1	21
11	Predicting the dry bulk density of soils across Denmark: Comparison of single-parameter, multi-parameter, and vis–NIR based models. Geoderma, 2020, 361, 114080.	5.1	31
12	Compression and rebound characteristics of agricultural sandy pasture soils from South Greenland. Geoderma, 2020, 380, 114608.	5.1	11
13	Combining visible nearâ€infrared spectroscopy and water vapor sorption for soil specific surface area estimation. Vadose Zone Journal, 2020, 19, e20007.	2.2	7
14	Gas diffusion characteristics of agricultural soils from South Greenland. Soil Science Society of America Journal, 2020, 84, 1606-1619.	2.2	7
15	Characterization and comparison of groundwater quality and redox conditions in the Arakawa Lowland and Musashino Upland, southern Kanto Plain of the Tokyo Metropolitan area, Japan. Science of the Total Environment, 2020, 722, 137783.	8.0	9
16	Automated rainfall simulator for variable rainfall on urban green areas. Hydrological Processes, 2019, 33, 3364-3377.	2.6	10
17	Comparison of Cation Exchange Capacity Estimated from Vis–NIR Spectral Reflectance Data and a Pedotransfer Function. Vadose Zone Journal, 2019, 18, 1-8.	2.2	18
18	The Relation between Soil Water Repellency and Water Content Can Be Predicted by Visâ€NIR Spectroscopy. Soil Science Society of America Journal, 2019, 83, 1616-1627.	2.2	9

#	Article	IF	CITATIONS
19	Linking pore network structure derived by microfocus X-ray CT to mass transport parameters in differently compacted loamy soils. Soil Research, 2019, 57, 642.	1.1	6
20	Effect of long-term irrigation and tillage practices on X-ray CT and gas transport derived pore-network characteristics. Soil Research, 2019, 57, 657.	1.1	11
21	Estimating Soil Particle Density using Visible Nearâ€infrared Spectroscopy and a Simple, Twoâ€compartment Pedotransfer Function. Soil Science Society of America Journal, 2019, 83, 37-47.	2.2	10
22	Improved estimation of clay content from water content for soils rich in smectite and kaolinite. Geoderma, 2019, 350, 40-45.	5.1	8
23	Field-Scale Monitoring of Urban Green Area Rainfall-Runoff Processes. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	1.9	9
24	Comparing Visible–Nearâ€Infrared Spectroscopy and a Pedotransfer Function for Predicting the Dry Region of the Soilâ€Water Retention Curve. Vadose Zone Journal, 2019, 18, 1-13.	2.2	8
25	Combining Visibleâ °'Nearâ€Infrared and Pedotransfer Functions for Parameterization of Tile Drain Flow Simulations. Vadose Zone Journal, 2019, 18, 1-12.	2.2	11
26	Organic carbon content controls the severity of water repellency and the critical moisture level across New Zealand pasture soils. Geoderma, 2019, 338, 281-290.	5.1	33
27	Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures. Geoderma, 2018, 313, 82-91.	5.1	54
28	Visibleâ€Nearâ€Infrared Spectroscopy Prediction of Soil Characteristics as Affected by Soilâ€Water Content. Soil Science Society of America Journal, 2018, 82, 1333-1346.	2.2	29
29	Particle Leaching Rates from a Loamy Soil Are Controlled by the Mineral Fines Content and the Degree of Preferential Flow. Journal of Environmental Quality, 2018, 47, 1538-1545.	2.0	3
30	Saturation-dependent gas transport in sand packs: Experiments and theoretical applications. Advances in Water Resources, 2018, 122, 139-147.	3.8	8
31	Can the Volume Ratio of Coarse to Fine Particles Explain the Hydraulic Properties of Sandy Soil?. Soil Science Society of America Journal, 2018, 82, 1093-1100.	2.2	7
32	Soil Specific Surface Area Determination by Visible Nearâ€Infrared Spectroscopy. Soil Science Society of America Journal, 2018, 82, 1046-1056.	2.2	17
33	Combining Xâ€ray Computed Tomography and Visible Nearâ€Infrared Spectroscopy for Prediction of Soil Structural Properties. Vadose Zone Journal, 2018, 17, 1-13.	2.2	23
34	Predicting the Campbell Soil Water Retention Function: Comparing Visible–Nearâ€Infrared Spectroscopy with Classical Pedotransfer Function. Vadose Zone Journal, 2018, 17, 1-12.	2.2	19
35	Visible–Near-Infrared Spectroscopy can predict Mass Transport of Dissolved Chemicals through Intact Soil. Scientific Reports, 2018, 8, 11188.	3.3	21
36	Effects of Biochar on Dispersibility of Colloids in Agricultural Soils. Journal of Environmental Quality, 2017, 46, 143-152.	2.0	21

#	Article	IF	CITATIONS
37	Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination. Biosystems Engineering, 2017, 156, 157-172.	4.3	43
38	Effects of Flow Rate and Gas Species on Microbubble and Nanobubble Transport in Porous Media. Journal of Environmental Engineering, ASCE, 2017, 143, .	1.4	13
39	Clay-to-Carbon Ratio Controls the Effect of Herbicide Application on Soil Bacterial Richness and Diversity in a Loamy Field. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	3
40	Complete Soil Texture is Accurately Predicted by Visible Near-Infrared Spectroscopy. Soil Science Society of America Journal, 2017, 81, 758-769.	2.2	31
41	Closure to discussion of "Pore network structure linked by X-ray CT to particle characteristics and transport parameters―by Hamamoto S., Moldrup P., Kawamoto K., Sakaki T., Nishimura T., and Komtatsu, T. Soils and Foundations, 2017, 57, 901-903.	3.1	1
42	Xâ€ray CTâ€Derived Soil Characteristics Explain Varying Air, Water, and Solute Transport Properties across a Loamy Field. Vadose Zone Journal, 2016, 15, 1-13.	2.2	52
43	Characterization of Thermal, Hydraulic, and Gas Diffusion Properties in Variably Saturated Sand Grades. Vadose Zone Journal, 2016, 15, 1-11.	2.2	12
44	Prediction of biopore- and matrix-dominated flow from X-ray CT-derived macropore network characteristics. Hydrology and Earth System Sciences, 2016, 20, 4017-4030.	4.9	33
45	Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling. Water Research, 2016, 94, 120-127.	11.3	52
46	Temperature effects on solute diffusion and adsorption in differently compacted kaolin clay. Environmental Earth Sciences, 2016, 75, 1.	2.7	19
47	Soil Properties Control Glyphosate Sorption in Soils Amended with Birch Wood Biochar. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	27
48	Assessing Soil Water Repellency of a Sandy Field with Visible near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2016, 24, 215-224.	1.5	19
49	Field-Scale Predictions of Soil Contaminant Sorption Using Visible–Near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy, 2016, 24, 281-291.	1.5	20
50	Pore network structure linked by X-ray CT to particle characteristics and transport parameters. Soils and Foundations, 2016, 56, 676-690.	3.1	47
51	Water and solute transport in agricultural soils predicted by volumetric clay and silt contents. Journal of Contaminant Hydrology, 2016, 192, 194-202.	3.3	21
52	Visible–Nearâ€Infrared Spectroscopy Can Predict the Clay/Organic Carbon and Mineral Fines/Organic Carbon Ratios. Soil Science Society of America Journal, 2016, 80, 1486-1495.	2.2	29
53	Evaluation of theoretical and empirical water vapor sorption isotherm models for soils. Water Resources Research, 2016, 52, 190-205.	4.2	50
54	Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 2016, 103, 44-55.	4.3	83

#	Article	IF	CITATIONS
55	Quantifying vertical stress transmission and compaction-induced soil structure using sensor mat and X-ray computed tomography. Soil and Tillage Research, 2016, 158, 110-122.	5.6	35
56	Soil-water repellency characteristic curves for soil profiles with organic carbon gradients. Geoderma, 2016, 264, 150-159.	5.1	30
57	Effects of Soil Bulk Density on Gas Transport Parameters and Poreâ€Network Properties across a Sandy Field Site. Vadose Zone Journal, 2015, 14, 1-12.	2.2	13
58	Quantification of Soil Pore Network Complexity with X-ray Computed Tomography and Gas Transport Measurements. Soil Science Society of America Journal, 2015, 79, 1577-1589.	2.2	29
59	Pore Structure Characteristics After 2 Years of Biochar Application to a Sandy Loam Field. Soil Science, 2015, 180, 41-46.	0.9	19
60	Effects of Soil Compaction and Organic Carbon Content on Preferential Flow in Loamy Field Soils. Soil Science, 2015, 180, 10-20.	0.9	11
61	Effects of CT Number Derived Matrix Density on Preferential Flow and Transport in a Macroporous Agricultural Soil. Vadose Zone Journal, 2015, 14, 1-13.	2.2	43
62	The Waterâ€Induced Linear Reduction Gas Diffusivity Model Extended to Three Pore Regions. Vadose Zone Journal, 2015, 14, 1-9.	2.2	6
63	A New Two-Stage Approach to predicting the soil water characteristic from saturation to oven-dryness. Journal of Hydrology, 2015, 521, 498-507.	5.4	74
64	Predictivity Strength of the Spatial Variability of Phenanthrene Sorption Across Two Sandy Loam Fields. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	6
65	Characterization of water repellency for hydrophobized grains with different geometries and sizes. Environmental Earth Sciences, 2015, 74, 5525-5539.	2.7	21
66	Prediction of the glyphosate sorption coefficient across two loamy agricultural fields. Geoderma, 2015, 259-260, 224-232.	5.1	31
67	Can Simple Soil Parameters Explain Field-Scale Variations in Glyphosate-, Bromoxyniloctanoate-, Diflufenican-, and Bentazone Mineralization?. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	4
68	Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. Geoderma, 2015, 237-238, 9-20.	5.1	140
69	Rapid and Fully Automated Measurement of Water Vapor Sorption Isotherms: New Opportunities for Vadose Zone Research. Vadose Zone Journal, 2014, 13, 1-7.	2.2	25
70	The Effects of Moisture Conditions-From Wet to Hyper dry-On Visible Near-Infrared Spectra of Danish Reference Soils. Soil Science Society of America Journal, 2014, 78, 422-433.	2.2	39
71	Modeling gravity effects on water retention and gas transport characteristics in plant growth substrates. Advances in Space Research, 2014, 54, 797-808.	2.6	7
72	Phenanthrene Sorption on Biochar-Amended Soils: Application Rate, Aging, and Physicochemical Properties of Soil. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	46

#	Article	IF	CITATIONS
73	Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils. Journal of Hydrology, 2014, 512, 388-396.	5.4	26
74	Thermal properties of boring core samples from the Kanto area, Japan: Development of predictive models for thermal conductivity and diffusivity. Soils and Foundations, 2014, 54, 116-125.	3.1	27
75	Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biology and Fertility of Soils, 2014, 50, 1087-1097.	4.3	67
76	Impact of long-term fertilization practice on soil structure evolution. Geoderma, 2014, 217-218, 181-189.	5.1	83
77	Pore Structure of Natural and Regenerated Soil Aggregates: An X-Ray Computed Tomography Analysis. Soil Science Society of America Journal, 2014, 78, 377-386.	2.2	19
78	Simultaneous Loss of Soil Biodiversity and Functions along a Copper Contamination Gradient: When Soil Goes to Sleep. Soil Science Society of America Journal, 2014, 78, 1239-1250.	2.2	35
79	Evaluation of a Fully Automated Analyzer for Rapid Measurement of Water Vapor Sorption Isotherms for Applications in Soil Science. Soil Science Society of America Journal, 2014, 78, 754-760.	2.2	29
80	Effects of Biochar on Air and Water Permeability and Colloid and Phosphorus Leaching in Soils from a Natural Calcium Carbonate Gradient. Journal of Environmental Quality, 2014, 43, 647-657.	2.0	45
81	Leaching of Clyphosate and Aminomethylphosphonic Acid from an Agricultural Field over a Twelveâ€Year Period. Vadose Zone Journal, 2014, 13, 1-18.	2.2	27
82	Sorption of Phenanthrene on Agricultural Soils. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	17
83	Direct and Indirect Short-term Effects of Biochar on Physical Characteristics of an Arable Sandy Loam. Soil Science, 2013, 178, 465-473.	0.9	62
84	Long-Term Effect of Different Carbon Management Strategies on Water Flow and Related Processes for Three Loamy Soils. Soil Science, 2013, 178, 379-388.	0.9	4
85	X-ray CT and Laboratory Measurements on Glacial Till Subsoil Cores. Soil Science, 2013, 178, 359-368.	0.9	35
86	Predicting Soil Organic Carbon at Field Scale Using a National Soil Spectral Library. Journal of Near Infrared Spectroscopy, 2013, 21, 213-222.	1.5	32
87	Water Retention, Gas Transport, and Pore Network Complexity during Short-Term Regeneration of Soil Structure. Soil Science Society of America Journal, 2013, 77, 1965-1976.	2.2	16
88	Correlating Gas Transport Parameters and X-Ray Computed Tomography Measurements in Porous Media. Soil Science, 2013, 178, 60-68.	0.9	23
89	Soil Specific Surface Area and Non‣ingularity of Soilâ€Water Retention at Low Saturations. Soil Science Society of America Journal, 2013, 77, 43-53.	2.2	64
90	Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties. Soil Science Society of America Journal, 2013, 77, 1517-1528.	2.2	6

#	Article	IF	CITATIONS
91	Revealing Soil Structure and Functional Macroporosity along a Clay Gradient Using X-ray Computed Tomography. Soil Science Society of America Journal, 2013, 77, 403-411.	2.2	71
92	Gas Diffusivityâ€Based Design and Characterization of Greenhouse Growth Substrates. Vadose Zone Journal, 2013, 12, 1-13.	2.2	9
93	Modeling Air Permeability in Variably Saturated Soil from Two Natural Clay Gradients. Soil Science Society of America Journal, 2013, 77, 362-371.	2.2	13
94	Structureâ€Dependent Waterâ€Induced Linear Reduction Model for Predicting Gas Diffusivity and Tortuosity in Repacked and Intact Soil. Vadose Zone Journal, 2013, 12, 1-11.	2.2	83
95	Effects of Past Copper Contamination and Soil Structure on Copper Leaching from Soil. Journal of Environmental Quality, 2013, 42, 1852-1862.	2.0	23
96	Comparative Mapping of Soil Physical-Chemical and Structural Parameters at Field Scale to Identify Zones of Enhanced Leaching Risk. Journal of Environmental Quality, 2013, 42, 271-283.	2.0	48
97	Contact Angles of Water-repellent Porous Media Inferred by Tensiometer- TDR Probe Measurement Under Controlled Wetting and Drying Cycles. Soil Science Society of America Journal, 2013, 77, 1944-1954.	2.2	5
98	Gas Dispersion in Granular Porous Media under Airâ€Đry and Wet Conditions. Soil Science Society of America Journal, 2012, 76, 845-852.	2.2	8
99	Diffusion Aspects of Designing Porous Growth Media for Earth and Space. Soil Science Society of America Journal, 2012, 76, 1564-1578.	2.2	15
100	Solute Diffusivity in Undisturbed Soil: Effects of Soil Water Content and Matric Potential. Soil Science Society of America Journal, 2012, 76, 51-60.	2.2	4
101	Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions. Soil Science Society of America Journal, 2012, 76, 1946-1956.	2.2	16
102	Linking Particle and Pore Size Distribution Parameters to Soil Gas Transport Properties. Soil Science Society of America Journal, 2012, 76, 18-27.	2.2	28
103	Maxwell's Law Based Models for Liquid and Gas Phase Diffusivities in Variably-Saturated Soil. Soil Science Society of America Journal, 2012, 76, 1509-1517.	2.2	8
104	Organic Matter Fraction Dependent Model for Predicting the Gas Diffusion Coefficient in Variably Saturated Soils. Vadose Zone Journal, 2012, 11, .	2.2	18
105	Thermal Properties of Peaty Soils: Effects of Liquidâ€Phase Impedance Factor and Shrinkage. Vadose Zone Journal, 2012, 11, .	2.2	19
106	The pH Dependency of 2,4-Dichlorophenoxyacetic Acid Adsorption and Desorption in Andosol and Kaolinite. Soil Science, 2012, 177, 12-21.	0.9	7
107	Linking Soil Physical Parameters Along a Density Gradient in a Loess-Soil Long-Term Experiment. Soil Science, 2012, 177, 1-11.	0.9	31
108	Simple Predictive Models for Saturated Hydraulic Conductivity of Technosands. Soil Science, 2012, 177, 153-157.	0.9	3

#	Article	IF	CITATIONS
109	Colloid Release From Differently Managed Loess Soil. Soil Science, 2012, 177, 301-309.	0.9	19
110	Soil-Gas Phase Transport and Structure Parameters for a Soil Under Different Management Regimes and at Two Moisture Levels. Soil Science, 2012, 177, 527-534.	0.9	8
111	Macropores and Macropore Transport. Soil Science, 2012, 177, 535-542.	0.9	23
112	Unified measurement system with suction control for measuring hysteresis in soilâ \in gas transport parameters. Water Resources Research, 2012, 48, .	4.2	10
113	Variable Pore Connectivity Model Linking Gas Diffusivity and Airâ€Phase Tortuosity to Soil Matric Potential. Vadose Zone Journal, 2012, 11, .	2.2	8
114	Soil microbial and physical properties and their relations along a steep copper gradient. Agriculture, Ecosystems and Environment, 2012, 159, 9-18.	5.3	37
115	Vadose Zone Biodegradation of Benzene Vapors in Repacked and Undisturbed Soil Cores. Vadose Zone Journal, 2012, 11, .	2.2	13
116	Characterizing Timeâ€Dependent Contact Angles for Sands Hydrophobized with Oleic and Stearic Acids. Vadose Zone Journal, 2012, 11, .	2.2	22
117	Extreme Compaction Effects on Gas Transport Parameters and Estimated Climate Gas Exchange for a Landfill Final Cover Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2011, 137, 653-662.	3.0	30
118	Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents. Water Resources Research, 2011, 47, .	4.2	80
119	Density of macropores as related to soil and earthworm community parameters in cultivated grasslands. Geoderma, 2011, 162, 319-326.	5.1	38
120	Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil. Waste Management, 2011, 31, 2464-2472.	7.4	37
121	Density orrected Models for Gas Diffusivity and Air Permeability in Unsaturated Soil. Vadose Zone Journal, 2011, 10, 226-238.	2.2	96
122	Colloid and Phosphorus Leaching From Undisturbed Soil Cores Sampled Along a Natural Clay Gradient. Soil Science, 2011, 176, 399-406.	0.9	33
123	Mobilization and Leaching of Natural and Water Dispersible Colloids in Aggregated Volcanic Ash Soil Columns. Soils and Foundations, 2011, 51, 123-132.	3.1	2
124	Transport and Deposition of Suspended Soil Colloids in Saturated Sand Columns. Journal of Hazardous, Toxic, and Radioactive Waste, 2011, 15, 275-284.	2.0	4
125	Two-Region Extended Archie's Law Model for Soil Air Permeability and Gas Diffusivity. Soil Science Society of America Journal, 2011, 75, 795-806.	2.2	42
126	Gas Transport Parameters for Compacted Reddish-Brown Soil in Sri Lankan Landfill Final Cover. Journal of Hazardous, Toxic, and Radioactive Waste, 2011, 15, 285-295.	2.0	6

#	Article	IF	CITATIONS
127	Generalized Density orrected Model for Gas Diffusivity in Variably Saturated Soils. Soil Science Society of America Journal, 2011, 75, 1315-1329.	2.2	29
128	Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media. Vadose Zone Journal, 2011, 10, 1228-1241.	2.2	8
129	A Simple Beta-Function Model for Soil-Water Repellency as a Function of Water and Organic Carbon Contents. Soil Science, 2010, 175, 461-468.	0.9	14
130	Twoâ€Region Model for Soil Water Repellency as a Function of Matric Potential and Water Content. Vadose Zone Journal, 2010, 9, 719-730.	2.2	24
131	Gas-phase diffusivity and tortuosity of structured soils. Journal of Contaminant Hydrology, 2010, 115, 26-33.	3.3	50
132	Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface. Journal of Hazardous Materials, 2010, 179, 573-580.	12.4	16
133	Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface. Vadose Zone Journal, 2010, 9, 137.	2.2	27
134	Hierarchical, Bimodal Model for Gas Diffusivity in Aggregated, Unsaturated Soils. Soil Science Society of America Journal, 2010, 74, 481-491.	2.2	28
135	Multitracer and Filter-Separated Half-Cell Method for Measuring Solute Diffusion in Undisturbed Soil. Soil Science Society of America Journal, 2010, 74, 1084-1091.	2.2	5
136	Excludedâ€volume expansion of Archie's law for gas and solute diffusivities and electrical and thermal conductivities in variably saturated porous media. Water Resources Research, 2010, 46, .	4.2	58
137	Unified Measurement System for the Gas Dispersion Coefficient, Air Permeability, and Gas Diffusion Coefficient in Variably Saturated Soil. Soil Science Society of America Journal, 2009, 73, 1921-1930.	2.2	31
138	EFFECTS OF BOUNDARY CONDITIONS ON SHAPE FACTOR FOR IN-SITU AIR PERMEABILITY MEASUREMENTS. Doboku Gakkai Ronbunshuu C, 2009, 65, 579-586.	0.1	0
139	The Solute Diffusion Coefficient in Variably Compacted, Unsaturated Volcanic Ash Soils. Vadose Zone Journal, 2009, 8, 942-952.	2.2	20
140	Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils. Vadose Zone Journal, 2009, 8, 986-995.	2.2	62
141	Variable Pore Connectivity Factor Model for Gas Diffusivity in Unsaturated, Aggregated Soil. Vadose Zone Journal, 2008, 7, 397-405.	2.2	34
142	A Gas Diffusivity Model Based on Airâ€, Solidâ€, and Waterâ€Phase Resistance in Variably Saturated Soil. Vadose Zone Journal, 2008, 7, 1276-1286.	2.2	46
143	USEFUL SOIL-WATER REPELLENCY INDICES. Soil Science, 2008, 173, 747-757.	0.9	20
144	SORPTION AND LEACHING OF SHORT-TERM-AGED PAHS IN EIGHT EUROPEAN SOILS. Soil Science, 2008, 173, 13-24.	0.9	21

#	Article	IF	CITATIONS
145	Linear Model to Predict Soil-Gas Diffusivity from Two Soil-Water Retention Points in Unsaturated Volcanic Ash Soils. Soils and Foundations, 2008, 48, 397-406.	3.1	13
146	Predicting Air Permeability in Undisturbed, Subsurface Sandy Soils from Air-Filled Porosity. Journal of Environmental Engineering, ASCE, 2007, 133, 995-1001.	1.4	10
147	Water Repellency of Aggregate Size Fractions of a Volcanic Ash Soil. Soil Science Society of America Journal, 2007, 71, 1658-1666.	2.2	69
148	GAS DIFFUSIVITY AND AIR PERMEABILITY IN A VOLCANIC ASH SOIL PROFILE. Soil Science, 2007, 172, 432-443.	0.9	19
149	SOIL-WATER CONTENT DEPENDENCY OF WATER REPELLENCY IN SOILS. Soil Science, 2007, 172, 577-588.	0.9	78
150	CAS TRANSPORT PARAMETERS ALONG FIELD TRANSECTS OF A VOLCANIC ASH SOIL. Soil Science, 2007, 172, 3-16.	0.9	19
151	PREDICTIVE-DESCRIPTIVE MODELS FOR GAS AND SOLUTE DIFFUSION COEFFICIENTS IN VARIABLY SATURATED POROUS MEDIA COUPLED TO PORE-SIZE DISTRIBUTION. Soil Science, 2007, 172, 741-750.	0.9	28
152	Air permeability of compost as related to bulk density and volumetric air content. Waste Management and Research, 2007, 25, 343-351.	3.9	28
153	Bimodal Probability Law Model for Unified Description of Water Retention, Air and Water Permeability, and Gas Diffusivity in Variably Saturated Soil. Vadose Zone Journal, 2006, 5, 1119-1128.	2.2	11
154	Gas Transport Parameters in the Vadose Zone: Development and Tests of Power-Law Models for Air Permeability. Vadose Zone Journal, 2006, 5, 1205-1215.	2.2	66
155	Colloid and Bromide Transport in Undisturbed Soil Columns: Application of Two-Region Model. Vadose Zone Journal, 2006, 5, 649-656.	2.2	28
156	Gas Transport Parameters in the Vadose Zone: Gas Diffusivity in Field and Lysimeter Soil Profiles. Vadose Zone Journal, 2006, 5, 1194-1204.	2.2	39
157	LINKING THE GARDNER AND CAMPBELL MODELS FOR WATER RETENTION AND HYDRAULIC CONDUCTIVITY IN NEAR-SATURATED SOIL. Soil Science, 2006, 171, 573-584.	0.9	9
158	Comparison of Air and Water Permeability between Disturbed and Undisturbed Soils. Soil Science Society of America Journal, 2005, 69, 1361-1371.	2.2	103
159	PREDICTIVE-DESCRIPTIVE MODELS FOR GAS AND SOLUTE DIFFUSION COEFFICIENTS IN VARIABLY SATURATED POROUS MEDIA COUPLED TO PORE-SIZE DISTRIBUTION. Soil Science, 2005, 170, 843-853.	0.9	46
160	PREDICTIVE-DESCRIPTIVE MODELS FOR GAS AND SOLUTE DIFFUSION COEFFICIENTS IN VARIABLY SATURATED POROUS MEDIA COUPLED TO PORE-SIZE DISTRIBUTION. Soil Science, 2005, 170, 854-866.	0.9	44
161	PREDICTIVE-DESCRIPTIVE MODELS FOR GAS AND SOLUTE DIFFUSION COEFFICIENTS IN VARIABLY SATURATED POROUS MEDIA COUPLED TO PORE-SIZE DISTRIBUTION. Soil Science, 2005, 170, 867-880.	0.9	41
162	Threeâ€Porosity Model for Predicting the Gas Diffusion Coefficient in Undisturbed Soil. Soil Science Society of America Journal, 2004, 68, 750-759.	2.2	125

#	Article	IF	CITATIONS
163	Waterâ€Dispersible Colloids: Effects of Measurement Method, Clay Content, Initial Soil Matric Potential, and Wetting Rate. Vadose Zone Journal, 2004, 3, 403-412.	2.2	59
164	Colloid Mobilization and Transport in Undisturbed Soil Columns. I. Pore Structure Characterization and Tritium Transport. Vadose Zone Journal, 2004, 3, 413-423.	2.2	47
165	Runoff modelling at two field slopes: use ofin situ measurements of air permeability to characterize spatial variability of saturated hydraulic conductivity. Hydrological Processes, 2004, 18, 1009-1026.	2.6	9
166	Water-Dispersible Colloids: Effects of Measurement Method, Clay Content, Initial Soil Matric Potential, and Wetting Rate. Vadose Zone Journal, 2004, 3, 403-412.	2.2	21
167	TIME-DEPENDENCY OF NAPHTHALENE SORPTION IN SOIL: SIMPLE RATE-, DIFFUSION-, AND ISOTHERM-PARAMETER-BASED MODELS. Soil Science, 2004, 169, 342-354.	0.9	8
168	PREDICTING THREE-REGION UNSATURATED HYDRAULIC CONDUCTIVITY FROM THREE SOIL-WATER RETENTION POINTS. Soil Science, 2004, 169, 157-167.	0.9	4
169	Colloid Mobilization and Transport in Undisturbed Soil Columns. II. The Role of Colloid Dispersibility and Preferential Flow. Vadose Zone Journal, 2004, 3, 424-433.	2.2	47
170	Colloid Mobilization and Transport in Undisturbed Soil Columns. I. Pore Structure Characterization and Tritium Transport. Vadose Zone Journal, 2004, 3, 413-423.	2.2	25
171	Colloid Mobilization and Transport in Undisturbed Soil Columns. II. The Role of Colloid Dispersibility and Preferential Flow. Vadose Zone Journal, 2004, 3, 424-433.	2.2	20
172	Three-Porosity Model for Predicting the Gas Diffusion Coefficient in Undisturbed Soil. Soil Science Society of America Journal, 2004, 68, 750.	2.2	30
173	Sample area of two- and three-rod time domain reflectometry probes. Water Resources Research, 2003, 39, .	4.2	26
174	Transverse sample area of two- and three-rod time domain reflectometry probes: Electrical conductivity. Water Resources Research, 2003, 39, .	4.2	11
175	Metal-coated printed circuit board time domain reflectometry probes for measuring water and solute transport in soil. Water Resources Research, 2003, 39, .	4.2	11
176	Relating landfill gas emissions to atmospheric pressure using numerical modelling and state-space analysis. Waste Management and Research, 2003, 21, 356-366.	3.9	42
177	Field Application of a Portable Air Permeameter to Characterize Spatial Variability in Air and Water Permeability. Vadose Zone Journal, 2003, 2, 618-626.	2.2	8
178	TIME DOMAIN REFLECTOMETRY DEVELOPMENTS IN SOIL SCIENCE: II. COAXIAL FLOW CELL FOR MEASURING EFFLUENT ELECTRICAL CONDUCTIVITY. Soil Science, 2003, 168, 84-89.	0.9	2
179	TIME DOMAIN REFLECTOMETRY DEVELOPMENTS IN SOIL SCIENCE: I. UNBALANCED TWO-ROD PROBE SPATIAL SENSITIVITY AND SAMPLING VOLUME. Soil Science, 2003, 168, 77-83.	0.9	13
180	TIME DOMAIN REFLECTOMETRY DEVELOPMENTS IN SOIL SCIENCE: III. SMALL-SCALE PROBE FOR MEASURING BULK SOIL ELECTRICAL CONDUCTIVITY. Soil Science, 2003, 168, 90-98.	0.9	2

#	Article	IF	CITATIONS
181	Title is missing!. Soil Science, 2003, 168, 311-320.	0.9	2
182	ESTIMATING SATURATED HYDRAULIC CONDUCTIVITY AND AIR PERMEABILITY FROM SOIL PHYSICAL PROPERTIES USING STATE-SPACE ANALYSIS. Soil Science, 2003, 168, 311-320.	0.9	18
183	Linking Soil Microbial Activity to Water―and Airâ€Phase Contents and Diffusivities. Soil Science Society of America Journal, 2003, 67, 156-165.	2.2	204
184	Field Application of a Portable Air Permeameter to Characterize Spatial Variability in Air and Water Permeability. Vadose Zone Journal, 2003, 2, 618-626.	2.2	37
185	Air Permeability in Undisturbed Volcanic Ash Soils. Soil Science Society of America Journal, 2003, 67, 32-40.	2.2	41
186	Comparison of Naphthalene Diffusion and Nonequilibrium Adsorption-Desorption Experiments. Soil Science Society of America Journal, 2003, 67, 765-777.	2.2	4
187	Gas Diffusivity in Undisturbed Volcanic Ash Soils. Soil Science Society of America Journal, 2003, 67, 41-51.	2.2	42
188	Soil Constituent Facilitated Transport of Phosphorus from a High-P Surface Soil. Soils and Foundations, 2003, 43, 105-114.	3.1	13
189	Air Permeability in Undisturbed Volcanic Ash Soils. Soil Science Society of America Journal, 2003, 67, 32.	2.2	37
190	Gas Diffusivity in Undisturbed Volcanic Ash Soils. Soil Science Society of America Journal, 2003, 67, 41.	2.2	31
191	Linking Soil Microbial Activity to Water- and Air-Phase Contents and Diffusivities. Soil Science Society of America Journal, 2003, 67, 156.	2.2	63
192	Comparison of Naphthalene Diffusion and Nonequilibrium Adsorption-Desorption Experiments. Soil Science Society of America Journal, 2003, 67, 765.	2.2	12
193	Field Application of a Portable Air Permeameter to Characterize Spatial Variability in Air and Water Permeability. Vadose Zone Journal, 2003, 2, 618.	2.2	3
194	Linking landfill hydrology and leachate chemical composition at a controlled municipal landfill (KÃ¥strup, Denmark) using state-space analysis. Waste Management and Research, 2002, 20, 445-456.	3.9	13
195	QUANTIFICATION OF 14C-LABELED HYDROPHOBIC ORGANIC COMPOUNDS IN SOIL SAMPLES BY A SCINTILLATION FLUID EXTRACTION METHOD. Soil Science, 2002, 167, 25-34.	0.9	1
196	Diffusionâ€Limited Mobilization and Transport of Natural Colloids in Macroporous Soil. Vadose Zone Journal, 2002, 1, 125-136.	2.2	62
197	LEACHING OF COLLOIDAL MATTER AND DISSOLVED ORGANIC CARBON FROM SURFACE SOIL COLUMNS DURING MULTIPLE IRRIGATION PERIODS. Doboku Gakkai Ronbunshu, 2002, 2002, 61-76.	0.2	0
198	Diffusion-Limited Mobilization and Transport of Natural Colloids in Macroporous Soil. Vadose Zone Journal, 2002, 1, 125.	2.2	1

#	Article	IF	CITATIONS
199	Degradation of 4-Nonylphenol in Homogeneous and Nonhomogeneous Mixtures of Soil and Sewage Sludge. Environmental Science & Technology, 2001, 35, 3695-3700.	10.0	96
200	Nonsingularity of Naphthalene Sorption in Soil. Soil Science Society of America Journal, 2001, 65, 1622-1633.	2.2	12
201	SPATIAL AND TEMPORAL DYNAMICS OF AIR PERMEABILITY IN A CONSTRUCTED FIELD. Soil Science, 2001, 166, 153-162.	0.9	29
202	Modeling Lateral Gas Transport in Soil Adjacent to Old Landfill. Journal of Environmental Engineering, ASCE, 2001, 127, 145-153.	1.4	44
203	Stochastic analyses of field-scale pesticide leaching risk as influenced by spatial variability in physical and biochemical parameters. Water Resources Research, 2000, 36, 959-970.	4.2	14
204	Predicting Volatile Organic Vapor Sorption from Soil Specific Surface Area and Texture. Journal of Environmental Quality, 2000, 29, 1642-1649.	2.0	13
205	COUPLING DIAZINON VOLATILIZATION AND WATER EVAPORATION IN UNSATURATED SOILS: I. WATER TRANSPORT. Soil Science, 2000, 165, 681-689.	0.9	20
206	Predicting Soil-Water and Soil-Air Transport Properties and Their Effects on Soil-Vapor Extraction Efficiency. Ground Water Monitoring and Remediation, 1999, 19, 61-70.	0.8	49
207	Predicting saturated hydraulic conductivity from air permeability: Application in stochastic water infiltration modeling. Water Resources Research, 1999, 35, 2387-2400.	4.2	89
208	PREDICTING SATURATED AND UNSATURATED HYDRAULIC CONDUCTIVITY IN UNDISTURBED SOILS FROM SOIL WATER CHARACTERISTICS. Soil Science, 1999, 164, 877-887.	0.9	37
209	A new two-step stochastic modeling approach: Application to water transport in a spatially variable unsaturated soil. Water Resources Research, 1998, 34, 1909-1918.	4.2	15
210	VOC Vapor Sorption in Soil: Soil Type Dependent Model and Implications for Vapor Extraction. Journal of Environmental Engineering, ASCE, 1998, 124, 146-155.	1.4	45
211	Gas Permeability and Diffusivity in Undisturbed Soil: SVE Implications. Journal of Environmental Engineering, ASCE, 1998, 124, 979-986.	1.4	34
212	Simazine Sorption and Transport in Soils and Soil Particle Size Fractions Journal of Environmental Chemistry, 1998, 8, 769-779.	0.2	5
213	Kinetics and Equilibrium of Simazine Sorption on Soil Colloids Journal of Environmental Chemistry, 1998, 8, 259-266.	0.2	3
214	RETARDATION OF VOLATILE ORGANIC CHEMICAL GAS TRANSPORT IN SOILS UNDER DIFFERENT ENVIRONMENTAL CONDITIONS. Doboku Gakkai Ronbunshu, 1997, 1997, 23-29.	0.2	1
215	GAS CHROMATOGRAPHY MICRO-COLUMN METHOD FOR MEASURING RETARDATION OF VOLATILE ORGANIC CHEMICAL GAS TRANSPORT IN SOILS. Doboku Gakkai Ronbunshu, 1997, 1997, 13-22.	0.2	2
216	Effects of Vapor Extraction on Contaminant Flux to Atmosphere and Ground Water. Journal of Environmental Engineering, ASCE, 1996, 122, 700-706.	1.4	35

#	Article	IF	CITATIONS
217	Particle densities of cultivated south greenlandic soils can be explained by a threeâ€compartment model, pedotransfer functions, and a vis–NIR spectroscopy model. Soil Science Society of America Journal, 0, , .	2.2	1
218	Water―and airâ€filled pore networks and transport parameters under drying and wetting processes. Vadose Zone Journal, 0, , .	2.2	0