List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12127309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of the Precision in Measuring Glutathione at <scp>3 T</scp> With a <scp>MEGAâ€PRESS</scp> Sequence in Primary Motor Cortex and Occipital Cortex. Journal of Magnetic Resonance Imaging, 2022, 55, 435-442.	3.4	2
2	Reinnervation as measured by the motor unit size index is associated with preservation of muscle strength in amyotrophic lateral sclerosis, but not all muscles reinnervate. Muscle and Nerve, 2022, 65, 203-210.	2.2	6
3	The application of Raman spectroscopy to the diagnosis of mitochondrial muscle disease: A preliminary comparison between fibre optic probe and microscope formats. Journal of Raman Spectroscopy, 2022, 53, 172-181.	2.5	5
4	A review of Mendelian randomization in amyotrophic lateral sclerosis. Brain, 2022, 145, 832-842.	7.6	29
5	Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron, 2022, 110, 992-1008.e11.	8.1	51
6	Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis. Npj Genomic Medicine, 2022, 7, 8.	3.8	23
7	Multicentre appraisal of amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Communications, 2022, 4, fcac029.	3.3	29
8	Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science Translational Medicine, 2022, 14, eabj0264.	12.4	38
9	Unbiased metabolome screen leads to personalized medicine strategy for amyotrophic lateral sclerosis. Brain Communications, 2022, 4, fcac069.	3.3	10
10	SPG15 protein deficits are at the crossroads between lysosomal abnormalities, altered lipid metabolism and synaptic dysfunction. Human Molecular Genetics, 2022, 31, 2693-2710.	2.9	6
11	Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3′UTR protect against ALS. Nature Neuroscience, 2022, 25, 433-445.	14.8	16
12	Neurotoxic Astrocytes Directly Converted from Sporadic and Familial ALS Patient Fibroblasts Reveal Signature Diversities and miR-146a Theragnostic Potential in Specific Subtypes. Cells, 2022, 11, 1186.	4.1	11
13	Rapid identification of human muscle disease with fibre optic Raman spectroscopy. Analyst, The, 2022, 147, 2533-2540.	3.5	9
14	Tensor electrical impedance myography identifies bulbar disease progression in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2022, 139, 69-75.	1.5	3
15	Creatine kinase and prognosis in amyotrophic lateral sclerosis: a literature review and multi-centre cohort analysis. Journal of Neurology, 2022, 269, 5395-5404.	3.6	6
16	Simultaneous ALS and SCA2 associated with an intermediate-length <i>ATXN2</i> CAG-repeat expansion. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 579-582.	1.7	13
17	Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease. Aging Cell, 2021, 20, e13281.	6.7	31
18	Fit for purpose? A cross-sectional study to evaluate the acceptability and usability of HeadUp, a novel neck support collar for neurological neck weakness. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 38-45.	1.7	2

#	Article	IF	CITATIONS
19	The Effect of <scp> <i>SMN</i> </scp> Gene Dosage on <scp>ALS</scp> Risk and Disease Severity. Annals of Neurology, 2021, 89, 686-697.	5.3	10
20	The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Medicine, 2021, 19, 13.	5.5	52
21	Mitochondrial Dysfunction in Alzheimer's Disease: A Biomarker of the Future?. Biomedicines, 2021, 9, 63.	3.2	62
22	Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 510-518.	1.9	69
23	Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biology, 2021, 22, 90.	8.8	49
24	<i>In Vivo</i> Fiber Optic Raman Spectroscopy of Muscle in Preclinical Models of Amyotrophic Lateral Sclerosis and Duchenne Muscular Dystrophy. ACS Chemical Neuroscience, 2021, 12, 1768-1776.	3.5	12
25	Adipose-derived stem cells protect motor neurons and reduce glial activation in both inÂvitro and inÂvivo models of ALS. Molecular Therapy - Methods and Clinical Development, 2021, 21, 413-433.	4.1	11
26	Proteomic Approaches to Study Cysteine Oxidation: Applications in Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2021, 14, 678837.	2.9	10
27	Physical exercise is a risk factor for amyotrophic lateral sclerosis: Convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine, 2021, 68, 103397.	6.1	65
28	Innovating Clinical Trials for Amyotrophic Lateral Sclerosis. Neurology, 2021, 97, 528-536.	1.1	19
29	SRSF1-dependent inhibition of C9ORF72-repeat RNA nuclear export: genome-wide mechanisms for neuroprotection in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2021, 16, 53.	10.8	13
30	Extensive phenotypic characterisation of a human TDP-43Q331KÂtransgenic mouse model of amyotrophic lateral sclerosis (ALS). Scientific Reports, 2021, 11, 16659.	3.3	12
31	Tensor electrical impedance myography identifies clinically relevant features in amyotrophic lateral sclerosis. Physiological Measurement, 2021, 42, 105004.	2.1	4
32	Amyotrophic lateral sclerosis alters the metabolic aging profile in patient derived fibroblasts. Neurobiology of Aging, 2021, 105, 64-77.	3.1	16
33	Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Communications, 2021, 3, fcab141.	3.3	17
34	Type 2 diabetes mellitus-associated transcriptome alterations in cortical neurones and associated neurovascular unit cells in the ageing brain. Acta Neuropathologica Communications, 2021, 9, 5.	5.2	17
35	Membrane lipid raft homeostasis is directly linked to neurodegeneration. Essays in Biochemistry, 2021, 65, 999-1011.	4.7	15
36	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	21.4	223

#	Article	IF	CITATIONS
37	Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2021, 15, 783624.	2.8	13
38	Longitudinal multi-modal muscle-based biomarker assessment in motor neuron disease. Journal of Neurology, 2020, 267, 244-256.	3.6	15
39	Disrupted glycosylation of lipids and proteins is a cause of neurodegeneration. Brain, 2020, 143, 1332-1340.	7.6	58
40	Rare Variant Burden Analysis within Enhancers Identifies CAV1 as an ALS Risk Gene. Cell Reports, 2020, 33, 108456.	6.4	24
41	Advanced Glycation End Product Formation in Human Cerebral Cortex Increases With Alzheimer-Type Neuropathologic Changes but Is Not Independently Associated With Dementia in a Population-Derived Aging Brain Cohort. Journal of Neuropathology and Experimental Neurology, 2020, 79, 950-958.	1.7	7
42	Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine, 2020, 59, 102844.	6.1	41
43	SOD1-targeting therapies for neurodegenerative diseases: a review of current findings and future potential. Expert Opinion on Orphan Drugs, 2020, 8, 379-392.	0.8	2
44	Biomarkers in amyotrophic lateral sclerosis: a review of new developments. Current Opinion in Neurology, 2020, 33, 662-668.	3.6	20
45	Deficits in Mitochondrial Spare Respiratory Capacity Contribute to the Neuropsychological Changes of Alzheimer's Disease. Journal of Personalized Medicine, 2020, 10, 32.	2.5	20
46	Oligodendrocyte pathology exceeds axonal pathology in white matter in human amyotrophic lateral sclerosis. Journal of Pathology, 2020, 251, 262-271.	4.5	37
47	Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for <i>SOD1</i> ALS. New England Journal of Medicine, 2020, 383, 109-119.	27.0	354
48	Multi-dimensional electrical impedance myography of the tongue as a potential biomarker for amyotrophic lateral sclerosis. Clinical Neurophysiology, 2020, 131, 799-808.	1.5	16
49	UK case control study of smoking and risk of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 222-227.	1.7	10
50	Modelling and analysis of electrical impedance myography of the lateral tongue. Physiological Measurement, 2020, 41, 125008.	2.1	6
51	Magnetic resonance spectroscopy reveals mitochondrial dysfunction in amyotrophic lateral sclerosis. Brain, 2020, 143, 3603-3618.	7.6	24
52	<i>ATXN1</i> repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Communications, 2020, 2, fcaa064.	3.3	33
53	Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies. NAR Genomics and Bioinformatics, 2020, 2, Iqaa105.	3.2	13
54	C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathologica Communications, 2019, 7, 115.	5.2	75

#	Article	IF	CITATIONS
55	C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis. Brain, 2019, 142, 3771-3790.	7.6	59
56	Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain, 2019, 142, 586-605.	7.6	84
57	Telomere length is greater in ALS than in controls: a whole genome sequencing study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 229-234.	1.7	18
58	Biomarkers in Motor Neuron Disease: A State of the Art Review. Frontiers in Neurology, 2019, 10, 291.	2.4	87
59	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	5.3	118
60	Mutations in the Glycosyltransferase Domain of GLT8D1 Are Associated with Familial Amyotrophic Lateral Sclerosis. Cell Reports, 2019, 26, 2298-2306.e5.	6.4	57
61	Using telehealth in motor neuron disease to increase access to specialist multidisciplinary care: a UK-based pilot and feasibility study. BMJ Open, 2019, 9, e028525.	1.9	20
62	Process evaluation and exploration of telehealth in motor neuron disease in a UK specialist centre. BMJ Open, 2019, 9, e028526.	1.9	22
63	Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Science Translational Medicine, 2019, 11, .	12.4	37
64	Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Nature Neuroscience, 2019, 22, 1966-1974.	14.8	101
65	Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort. Neurobiology of Aging, 2019, 74, 234.e9-234.e15.	3.1	26
66	Striking phenotypic variation in a family with the P506S UBQLN2 mutation including amyotrophic lateral sclerosis, spastic paraplegia, and frontotemporal dementia. Neurobiology of Aging, 2019, 73, 229.e5-229.e9.	3.1	16
67	Younger age of onset in familial amyotrophic lateral sclerosis is a result of pathogenic gene variants, rather than ascertainment bias. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 268-271.	1.9	38
68	The role of mitochondria in amyotrophic lateral sclerosis. Neuroscience Letters, 2019, 710, 132933.	2.1	356
69	Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurology, The, 2018, 17, 423-433.	10.2	342
70	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
71	The TiM system: developing a novel telehealth service to improve access to specialist care in motor neurone disease using user-centered design. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 351-361.	1.7	37
72	Imaging muscle as a potential biomarker of denervation in motor neuron disease. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 248-255.	1.9	41

#	Article	IF	CITATIONS
73	Reconsidering the causality of TIA1 mutations in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 1-3.	1.7	22
74	Lost in translation: microRNAs mediate pathological cross-talk between motor neurons and astrocytes. Brain, 2018, 141, 2534-2536.	7.6	4
75	Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features. Acta Neuropathologica Communications, 2018, 6, 125.	5.2	47
76	Novel genotype-phenotype and MRI correlations in a large cohort of patients with <i>SPG7</i> mutations. Neurology: Genetics, 2018, 4, e279.	1.9	44
77	Ursodeoxycholic Acid Improves Mitochondrial Function and Redistributes Drp1 in Fibroblasts from Patients with Either Sporadic or Familial Alzheimer's Disease. Journal of Molecular Biology, 2018, 430, 3942-3953.	4.2	63
78	Efficacy of the Head Up collar in facilitating functional head movements in patients with Amyotrophic Lateral Sclerosis. Clinical Biomechanics, 2018, 57, 114-120.	1.2	7
79	Translating SOD1 Gene Silencing toward the Clinic: A Highly Efficacious, Off-Target-free, and Biomarker-Supported Strategy for fALS. Molecular Therapy - Nucleic Acids, 2018, 12, 75-88.	5.1	33
80	C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 281.1-281.	1.9	33
81	"Anything that makes life's journey better.―Exploring the use of digital technology by people living with motor neurone disease. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 378-387.	1.7	15
82	Comparison of the King's and MiToS staging systems for ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 227-232.	1.7	58
83	Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Neurobiology of Aging, 2017, 55, 123-131.	3.1	117
84	A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain, 2017, 140, 1611-1618.	7.6	71
85	Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	129
86	Viral delivery of C9ORF72 hexanucleotide repeat expansions in mice lead to repeat length dependent neuropathology and behavioral deficits DMM Disease Models and Mechanisms, 2017, 10, 859-868.	2.4	25
87	A data-driven approach links microglia to pathology and prognosis in amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2017, 5, 23.	5.2	63
88	Amyotrophic lateral sclerosis. Nature Reviews Disease Primers, 2017, 3, 17071.	30.5	885
89	Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology, 2017, 89, 1915-1922.	1.1	82
90	Can Astrocytes Be a Target for Precision Medicine?. Advances in Experimental Medicine and Biology, 2017, 1007, 111-128.	1.6	7

#	Article	IF	CITATIONS
91	Gene Therapy in the Nervous System: Failures and Successes. Advances in Experimental Medicine and Biology, 2017, 1007, 241-257.	1.6	6
92	Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Research, 2017, 27, 1895-1903.	5.5	277
93	C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nature Neuroscience, 2017, 20, 1225-1235.	14.8	138
94	SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nature Communications, 2017, 8, 16063.	12.8	106
95	A multicentre evaluation of oropharyngeal secretion management practices in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 1-9.	1.7	20
96	Protein Homeostasis in Amyotrophic Lateral Sclerosis: Therapeutic Opportunities?. Frontiers in Molecular Neuroscience, 2017, 10, 123.	2.9	62
97	Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype. Frontiers in Molecular Neuroscience, 2017, 10, 370.	2.9	24
98	C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten. Human Molecular Genetics, 2017, 26, 1133-1145.	2.9	23
99	Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2017, 12, 85.	10.8	51
100	Small RNA Sequencing of Sporadic Amyotrophic Lateral Sclerosis Cerebrospinal Fluid Reveals Differentially Expressed miRNAs Related to Neural and Glial Activity. Frontiers in Neuroscience, 2017, 11, 731.	2.8	83
101	An Objective Functional Characterisation of Head Movement Impairment in Individuals with Neck Muscle Weakness Due to Amyotrophic Lateral Sclerosis. PLoS ONE, 2017, 12, e0169019.	2.5	8
102	Immune response in peripheral axons delays disease progression in SOD1G93A mice. Journal of Neuroinflammation, 2016, 13, 261.	7.2	63
103	MicroNeurotrophins Improve Survival in Motor Neuron-Astrocyte Co-Cultures but Do Not Improve Disease Phenotypes in a Mutant SOD1 Mouse Model of Amyotrophic Lateral Sclerosis. PLoS ONE, 2016, 11, e0164103.	2.5	18
104	Oligogenic inheritance of optineurin (<i>OPTN</i>) and <i>C9ORF72</i> mutations in ALS highlights localisation of OPTN in the TDPâ€43â€negative inclusions of <i>C9ORF72</i> â€ALS. Neuropathology, 2016, 36, 125-134.	1.2	35
105	Motor neurone disease/amyotrophic lateral sclerosis associated with intermediateâ€length <scp>CAG</scp> repeat expansions in <scp><i>Ataxinâ€2</i></scp> does not have 1 <scp>C</scp> 2â€positive polyglutamine inclusions. Neuropathology and Applied Neurobiology, 2016, 42, 377-389.	3.2	7
106	The role of cranial and thoracic electromyography within diagnostic criteria for amyotrophic lateral sclerosis. Muscle and Nerve, 2016, 54, 378-385.	2.2	6
107	The C9orf72 protein interacts with Rab1a and the <scp>ULK</scp> 1 complex to regulate initiation of autophagy. EMBO Journal, 2016, 35, 1656-1676.	7.8	327
108	Using technology to improve access to specialist care in amyotrophic lateral sclerosis: A systematic review. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 313-324.	1.7	35

#	Article	IF	CITATIONS
109	Assessment of the Sheffield Support Snood, an innovative cervical orthosis designed for people affected by neck muscle weakness. Clinical Biomechanics, 2016, 32, 201-206.	1.2	21
110	Evaluating a novel cervical orthosis, the Sheffield Support Snood, in patients with amyotrophic lateral sclerosis/motor neuron disease with neck weakness. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 436-442.	1.7	27
111	Case report of concurrent Fabry disease and amyotrophic lateral sclerosis supports a common pathway of pathogenesis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 614-616.	1.7	2
112	Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6496-E6505.	7.1	139
113	Clinical aspects of motor neurone disease. Medicine, 2016, 44, 552-556.	0.4	13
114	Neuronal <scp>DNA</scp> damage responseâ€associated dysregulation of signalling pathways and cholesterol metabolism at the earliest stages of <scp>A</scp> lzheimerâ€type pathology. Neuropathology and Applied Neurobiology, 2016, 42, 167-179.	3.2	28
115	Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 593-599.	1.7	22
116	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
117	NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1037-1042.	21.4	218
118	Association of a Locus in the <i>CAMTA1</i> Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 812.	9.0	57
119	Long-term physical activity: an exogenous risk factor for sporadic amyotrophic lateral sclerosis?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 377-384.	1.7	46
120	The impact of gastrostomy in motor neurone disease: challenges and benefits from a patient and carer perspective. BMJ Supportive and Palliative Care, 2016, 6, 52-59.	1.6	33
121	DiPALS: Diaphragm Pacing in patients with Amyotrophic Lateral Sclerosis – a randomised controlled trial. Health Technology Assessment, 2016, 20, 1-186.	2.8	13
122	Head-Up; An interdisciplinary, participatory and co-design process informing the development of a novel head and neck support for people living with progressive neck muscle weakness. Journal of Medical Engineering and Technology, 2015, 39, 404-410.	1.4	25
123	Lysosomal and phagocytic activity is increased in astrocytes during disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Frontiers in Cellular Neuroscience, 2015, 9, 410.	3.7	36
124	A Reduced Astrocyte Response to β-Amyloid Plaques in the Ageing Brain Associates with Cognitive Impairment. PLoS ONE, 2015, 10, e0118463.	2.5	45
125	C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis. PLoS ONE, 2015, 10, e0127376.	2.5	83
126	The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain. Neuroscience Letters, 2015, 609, 11-17.	2.1	58

#	Article	IF	CITATIONS
127	The Spectrum of C9orf72-mediated Neurodegeneration and Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2015, 12, 326-339.	4.4	46
128	Developing an outcome measure for excessive saliva management in MND and an evaluation of saliva burden in Sheffield. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 108-113.	1.7	7
129	Intermediate length C9orf72 expansion in an ALS patient without classical C9orf72 neuropathology. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 249-251.	1.7	8
130	Effect of lipid profile on prognosis in the patients with amyotrophic lateral sclerosis: Insights from the olesoxime clinical trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 478-484.	1.7	45
131	A preliminary randomized trial of the mechanical insufflator-exsufflator versus breath-stacking technique in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 448-455.	1.7	39
132	Regionality of disease progression predicts prognosis in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 442-447.	1.7	3
133	Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes. Neurobiology of Aging, 2015, 36, 2006.e1-2006.e9.	3.1	22
134	Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathologica, 2015, 130, 63-75.	7.7	149
135	Current developments in gene therapy for amyotrophic lateral sclerosis. Expert Opinion on Biological Therapy, 2015, 15, 935-947.	3.1	30
136	The role of <i>TREM2</i> R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimer's and Dementia, 2015, 11, 1407-1416.	0.8	152
137	Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2015, 36, 2893-2903.	3.1	38
138	PTEN Depletion Decreases Disease Severity and Modestly Prolongs Survival in a Mouse Model of Spinal Muscular Atrophy. Molecular Therapy, 2015, 23, 270-277.	8.2	47
139	A neuronal (scp>DNA(scp> damage response is detected at the earliest stages of <scp>A(scp>lzheimer's neuropathology and correlates with cognitive impairment in the <scp>M(scp>edical <scp>R(scp>esearch <scp>C(scp>ouncil's <scp>C(scp>ognitive <scp>F(scp>unction and <scp>A(scp>geing <scp>S(scp>tudy ageing brain cohort. Neuropathology</scp></scp></scp></scp></scp></scp></scp></scp>	3.2	40
140	and Applied Neurobiology, 2015, 11, 163-196. Differences in protein quality control correlate with phenotype variability in 2 mouse models of familial amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 492-504.	3.1	63
141	Use of clinical staging in amyotrophic lateral sclerosis for phase 3 clinical trials. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 45-49.	1.9	75
142	Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxiaâ€response and <scp>RNA</scp> processing functions. Neuropathology and Applied Neurobiology, 2015, 41, 201-226.	3.2	73
143	Invited Review: Decoding the pathophysiological mechanisms that underlie <scp>RNA</scp> dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathology and Applied Neurobiology, 2015, 41, 109-134.	3.2	47
144	A new zebrafish model produced by TILLING of SOD1-related amyotrophic lateral sclerosis replicates key features of the disease and represents a tool for <i>in vivo</i> therapeutic screening. DMM Disease Models and Mechanisms, 2014, 7, 73-81.	2.4	53

#	Article	IF	CITATIONS
145	A zebrafish model exemplifies the long preclinical period of motor neuron disease. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1288-1289.	1.9	8
146	Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 829-832.	7.1	296
147	Factors influencing decision-making in relation to timing of gastrostomy insertion in patients with motor neurone disease. BMJ Supportive and Palliative Care, 2014, 4, 57-63.	1.6	43
148	Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain, 2014, 137, 2040-2051.	7.6	253
149	The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathologica, 2014, 127, 333-345.	7.7	150
150	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	7.7	123
151	Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis. Neurobiology of Aging, 2014, 35, 1499-1509.	3.1	77
152	Loss of nuclear <scp>TDP</scp> â€43 in amyotrophic lateral sclerosis (<scp>ALS</scp>) causes altered expression of splicing machinery and widespread dysregulation of <scp>RNA</scp> splicing in motor neurones. Neuropathology and Applied Neurobiology, 2014, 40, 670-685.	3.2	98
153	A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 2220-2231.	2.9	123
154	Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron, 2014, 84, 324-331.	8.1	308
155	<pre><scp>DNA</scp> damage response and senescence in endothelial cells of numan cerebral cortex and relation to <scp>A</scp>lzheimer's neuropathology progression: a populationâ€based study in the <scp>M</scp>edical <scp>R</scp>esearch <scp>C</scp>ouncil <scp>C</scp>ognitive <scp>F</scp>unction and <scp>A</scp>geing <scp>S</scp>tudy (<scp>MRC</scp>â€<scp>CFAS</scp>)</pre>	3.2	30
156	<scp><i>C9orf72</i></scp> and <scp><i>UNC13A</i></scp> are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: A genomeâ€wide metaâ€analysis. Annals of Neurology, 2014, 76, 120-133.	5.3	91
157	Health utility decreases with increasing clinical stage in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 285-291.	1.7	26
158	Diaphragm pacing systems for amyotrophic lateral sclerosis / motor neuron disease. The Cochrane Library, 2014, , .	2.8	1
159	Comparison of Blood RNA Extraction Methods Used for Gene Expression Profiling in Amyotrophic Lateral Sclerosis. PLoS ONE, 2014, 9, e87508.	2.5	25
160	Early Detection of Motor Dysfunction in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis (ALS) Using Home Cage Running Wheels. PLoS ONE, 2014, 9, e107918.	2.5	16
161	Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation. Molecular Neurodegeneration, 2013, 8, 12.	10.8	52
162	Residual association at C9orf72 suggests an alternative amyotrophic lateral sclerosis-causing hexanucleotide repeat. Neurobiology of Aging, 2013, 34, 2234.e1-2234.e7.	3.1	22

#	Article	IF	CITATIONS
163	Assessing social isolation in motor neurone disease: A Rasch analysis of the MND Social Withdrawal Scale. Journal of the Neurological Sciences, 2013, 334, 112-118.	0.6	8
164	Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 19-32.	1.7	135
165	Management of sialorrhoea in motor neuron disease: A survey of current UK practice. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 521-527.	1.7	28
166	Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurology, The, 2013, 12, 310-322.	10.2	454
167	Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathologica, 2013, 125, 95-109.	7.7	133
168	S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2013, 61, 438-452.	2.9	54
169	Clinical and Molecular Aspects of Motor Neuron Disease. Colloquium Series on Genomic and Molecular Medicine, 2013, 2, 1-60.	0.2	18
170	Transcriptomic indices of fast and slow disease progression in two mouse models of amyotrophic lateral sclerosis. Brain, 2013, 136, 3305-3332.	7.6	81
171	<i>C9ORF72</i> transcription in a frontotemporal dementia case with two expanded alleles. Neurology, 2013, 81, 1719-1721.	1.1	25
172	The C9ORF72 expansion mutation is a common cause of ALS+/â^'FTD in Europe and has a single founder. European Journal of Human Genetics, 2013, 21, 102-108.	2.8	201
173	Homozygosity analysis in amyotrophic lateral sclerosis. European Journal of Human Genetics, 2013, 21, 1429-1435.	2.8	12
174	Concurrence of multiple sclerosis and amyotrophic lateral sclerosis in patients with hexanucleotide repeat expansions of <i>C9ORF72</i> . Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 79-87.	1.9	57
175	Gastrostomy use in motor neurone disease (MND): A review, meta-analysis and survey of current practice. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 96-104.	1.7	55
176	A prospective pilot study measuring muscle volumetric change in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 414-423.	1.7	14
177	The initiation of non-invasive ventilation for patients with motor neuron disease: Patient and carer perceptions of obstacles and outcomes. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 105-110.	1.7	29
178	Tardbpl splicing rescues motor neuron and axonal development in a mutant tardbp zebrafish. Human Molecular Genetics, 2013, 22, 2376-2386.	2.9	32
179	ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Human Molecular Genetics, 2013, 22, 3690-3704.	2.9	130
180	<i>C9ORF72</i> expansions, parkinsonism, and Parkinson disease. Neurology, 2013, 81, 808-811.	1.1	57

PAMELA J SHAW

#	Article	IF	CITATIONS
181	The use of non-invasive ventilation at end of life in patients with motor neurone disease: A qualitative exploration of family carer and health professional experiences. Palliative Medicine, 2013, 27, 516-523.	3.1	47
182	Use of non-invasive ventilation at end of life. Palliative Medicine, 2013, 27, 878-878.	3.1	1
183	The natural history of motor neuron disease: Assessing the impact of specialist care. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 13-19.	1.7	70
184	Early interneuron dysfunction in ALS: Insights from a mutant <i>sod1</i> zebrafish model. Annals of Neurology, 2013, 73, 246-258.	5.3	82
185	The Impact on the Family Carer of Motor Neurone Disease and Intervention with Noninvasive Ventilation. Journal of Palliative Medicine, 2013, 16, 1602-1609.	1.1	22
186	Wild-type but not mutant SOD1 transgenic astrocytes promote the efficient generation of motor neuron progenitors from mouse embryonic stem cells. BMC Neuroscience, 2013, 14, 126.	1.9	4
187	Investigating cell death mechanisms in amyotrophic lateral sclerosis using transcriptomics. Frontiers in Cellular Neuroscience, 2013, 7, 259.	3.7	23
188	The Effect of SOD1 Mutation on Cellular Bioenergetic Profile and Viability in Response to Oxidative Stress and Influence of Mutation-Type. PLoS ONE, 2013, 8, e68256.	2.5	42
189	Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Frontiers in Cellular Neuroscience, 2013, 7, 178.	3.7	167
190	Using transcutaneous carbon dioxide monitor (TOSCA 500) to detect respiratory failure in patients with amyotrophic lateral sclerosis: A validation study. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 528-532.	2.1	19
191	Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain, 2012, 135, 751-764.	7.6	293
192	Respiratory management of motor neurone disease: a review of current practice and new developments. Practical Neurology, 2012, 12, 166-176.	1.1	18
193	The changing landscape of non-invasive ventilation in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 368-369.	1.9	13
194	Non-invasive ventilation in motor neuron disease: an update of current UK practice. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 371-376.	1.9	74
195	The chromosome 9 ALS and FTD locus is probably derived from a single founder. Neurobiology of Aging, 2012, 33, 209.e3-209.e8.	3.1	115
196	Protocol for diaphragm pacing in patients with respiratory muscle weakness due to motor neurone disease (DiPALS): a randomised controlled trial. BMC Neurology, 2012, 12, 74.	1.8	7
197	Gene expression profiling in human neurodegenerative disease. Nature Reviews Neurology, 2012, 8, 518-530.	10.1	183
198	Clinical aspects of motor neurone disease. Medicine, 2012, 40, 540-545.	0.4	3

#	Article	IF	CITATIONS
199	Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases. , 2012, , 2343-2347.		1
200	Contrasting effects of cerebrospinal fluid from motor neuron disease patients on the survival of primary motor neurons cultured with or without glia. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 257-263.	2.1	4
201	Alterations in the blood brain barrier in ageing cerebral cortex in relationship to Alzheimer-type pathology: A study in the MRC-CFAS population neuropathology cohort. Neuroscience Letters, 2011, 505, 25-30.	2.1	90
202	Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer's pathology and APOE genotype. Neurobiology of Aging, 2011, 32, 1795-1807.	3.1	166
203	Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nature Reviews Neurology, 2011, 7, 616-630.	10.1	512
204	Optimised and Rapid Pre-clinical Screening in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis (ALS). PLoS ONE, 2011, 6, e23244.	2.5	80
205	Development of a patient reported outcome measure for fatigue in motor neurone disease: the Neurological Fatigue Index (NFI-MND). Health and Quality of Life Outcomes, 2011, 9, 101.	2.4	31
206	Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathologica, 2011, 122, 657-671.	7.7	134
207	A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function. BMC Neuroscience, 2011, 12, 91.	1.9	19
208	Protocol for a double-blind randomised placebo-controlled trial of lithium carbonate in patients with amyotrophic Lateral Sclerosis (LiCALS) [Eudract number: 2008-006891-31]. BMC Neurology, 2011, 11, 111.	1.8	16
209	Rasch analysis of the hospital anxiety and depression scale (hads) for use in motor neurone disease. Health and Quality of Life Outcomes, 2011, 9, 82.	2.4	96
210	Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain, 2011, 134, 506-517.	7.6	71
211	Dysregulation of astrocyte–motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain, 2011, 134, 2627-2641.	7.6	176
212	Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis. Neurogenetics, 2010, 11, 217-225.	1.4	79
213	Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurology, The, 2010, 9, 986-994.	10.2	205
214	Downregulation of genes with a function in axon outgrowth and synapse formation in motor neurones of the VEGFI´/l´ mouse model of amyotrophic lateral sclerosis. BMC Genomics, 2010, 11, 203.	2.8	38
215	Oxidative stress in ALS: Key role in motor neuron injury and therapeutic target. Free Radical Biology and Medicine, 2010, 48, 629-641.	2.9	512
216	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	21.4	479

#	Article	IF	CITATIONS
217	Systemic Delivery of scAAV9 Expressing SMN Prolongs Survival in a Model of Spinal Muscular Atrophy. Science Translational Medicine, 2010, 2, 35ra42.	12.4	246
218	Motor neurone disease: a practical update on diagnosis and management. Clinical Medicine, 2010, 10, 252-258.	1.9	50
219	Novel FUS/TLS Mutations and Pathology in Familial and Sporadic Amyotrophic Lateral Sclerosis. Archives of Neurology, 2010, 67, 455-61.	4.5	113
220	Validation of the historical adulthood physical activity questionnaire (HAPAQ) against objective measurements of physical activity. International Journal of Behavioral Nutrition and Physical Activity, 2010, 7, 54.	4.6	23
221	Alterations of the blood–brain barrier in cerebral white matter lesions in the ageing brain. Neuroscience Letters, 2010, 486, 246-251.	2.1	68
222	Evaluation of two different methods for per-oral gastrostomy tube placement in patients with motor neuron disease (MND): PIG versus PEG procedures. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 531-536.	2.1	18
223	Pattern of spread and prognosis in lower limb-onset ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 369-373.	2.1	58
224	Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS). PLoS ONE, 2010, 5, e9872.	2.5	204
225	Microarray RNA Expression Analysis of Cerebral White Matter Lesions Reveals Changes in Multiple Functional Pathways. Stroke, 2009, 40, 369-375.	2.0	80
226	An in vitro screening cascade to identify neuroprotective antioxidants in ALS. Free Radical Biology and Medicine, 2009, 46, 1127-1138.	2.9	86
227	Astrocyte function and role in motor neuron disease: A future therapeutic target?. Glia, 2009, 57, 1251-1264.	4.9	156
228	Transcriptional response of the neuromuscular system to exercise training and potential implications for ALS. Journal of Neurochemistry, 2009, 109, 1714-1724.	3.9	37
229	Direct evidence for axonal transport defects in a novel mouse model of mutant spastinâ€induced hereditary spastic paraplegia (HSP) and human HSP patients. Journal of Neurochemistry, 2009, 110, 34-44.	3.9	135
230	Physical activity as an exogenous risk factor in motor neuron disease (MND): A review of the evidence. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2009, 10, 191-204.	2.1	82
231	Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1. NeuroReport, 2009, 20, 1450-1455.	1.2	34
232	Development and Characterisation of a Glutamate-Sensitive Motor Neurone Cell Line. Journal of Neurochemistry, 2008, 74, 1895-1902.	3.9	97
233	Clinical aspects of motor neurone disease. Medicine, 2008, 36, 640-645.	0.4	2
234	Diagnosis and management of motor neurone disease. BMJ: British Medical Journal, 2008, 336, 658-662.	2.3	167

#	Article	IF	CITATIONS
235	Large-scale pathways-based association study in amyotrophic lateral sclerosis. Brain, 2007, 130, 2292-2301.	7.6	32
236	Gene Expression Assays. Advances in Clinical Chemistry, 2007, 44, 247-292.	3.7	32
237	Microarray Analysis of the Cellular Pathways Involved in the Adaptation to and Progression of Motor Neuron Injury in the SOD1 G93A Mouse Model of Familial ALS. Journal of Neuroscience, 2007, 27, 9201-9219.	3.6	179
238	Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Human Molecular Genetics, 2007, 16, 2720-2728.	2.9	365
239	Chapter 17 Hereditary spastic paraparesis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 82, 327-352.	1.8	9
240	Chapter 4 Molecular mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 82, 57-87.	1.8	0
241	Pathological TDPâ€43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with <i>SOD1</i> mutations. Annals of Neurology, 2007, 61, 427-434.	5.3	840
242	Linkage to a known gene but no mutation identified: comprehensive reanalysis ofSPG4 HSP pedigrees reveals large deletions as the sole cause. Human Mutation, 2007, 28, 739-740.	2.5	10
243	Screening of the transcriptional regulatory regions of vascular endothelial growth factor receptor 2 (VEGFR2) in amyotrophic lateral sclerosis. BMC Medical Genetics, 2007, 8, 23.	2.1	13
244	Investigation of the mitochondrial genome in patients with atypical motor neuron disease. Journal of Neurology, 2007, 254, 482-487.	3.6	0
245	Mitochondrial DNA haplogroups and amyotrophic lateral sclerosis. Neurogenetics, 2007, 8, 65-67.	1.4	13
246	Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 1051-1067.	3.8	382
247	Expression of Vascular Endothelial Growth Factor and Its Receptors in the Central Nervous System in Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2006, 65, 26-36.	1.7	87
248	ALS: life and death in a bad neighborhood. Nature Medicine, 2006, 12, 885-887.	30.7	38
249	Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurology, The, 2006, 5, 140-147.	10.2	922
250	Motor neuron disease in a patient with a mitochondrial tRNAllemutation. Annals of Neurology, 2006, 59, 570-574.	5.3	54
251	White Matter Lesions in an Unselected Cohort of the Elderly. Stroke, 2006, 37, 1391-1398.	2.0	495
252	Impairment of mitochondrial anti-oxidant defence in SOD1-related motor neuron injury and amelioration by ebselen. Brain, 2006, 129, 1693-1709.	7.6	57

#	Article	IF	CITATIONS
253	The microtubule-severing protein Spastin is essential for axon outgrowth in the zebrafish embryo. Human Molecular Genetics, 2006, 15, 2763-2771.	2.9	138
254	Detection of mutations in whole genome-amplified DNA from laser-microdissected neurons. Journal of Neuroscience Methods, 2005, 147, 65-67.	2.5	9
255	Apoptosis in amyotrophic lateral sclerosis—what is the evidence?. Lancet Neurology, The, 2005, 4, 500-509.	10.2	78
256	Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia, 2005, 51, 241-253.	4.9	185
257	Production of monocyte chemoattractant proteinâ€1 in amyotrophic lateral sclerosis. Muscle and Nerve, 2005, 32, 541-544.	2.2	104
258	Screening of the regulatory and coding regions of vascular endothelial growth factor in amyotrophic lateral sclerosis. Neurogenetics, 2005, 6, 101-104.	1.4	15
259	Current and potential therapeutics in motor neuron diseases. , 2005, , 772-793.		0
260	Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS. Brain, 2005, 128, 1686-1706.	7.6	170
261	Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. Journal of Neurochemistry, 2004, 82, 1118-1128.	3.9	70
262	Glial Proliferation and Metabotropic Glutamate Receptor Expression in Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2004, 63, 831-840.	1.7	60
263	Differential expression of mGluR5 in human lumbosacral motoneurons. NeuroReport, 2004, 15, 271-273.	1.2	16
264	Hereditary spastic paraparesis: Disrupted intracellular transport associated with spastin mutation. Annals of Neurology, 2003, 54, 748-759.	5.3	114
265	Spastin and paraplegin gene analysis in selected cases of motor neurone disease (MND). Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2003, 4, 96-99.	1.2	12
266	The Cellular and Molecular Pathology of the Motor System in Hereditary Spastic Paraparesis due to Mutation of the Spastin Gene. Journal of Neuropathology and Experimental Neurology, 2003, 62, 1166-1177.	1.7	91
267	Chapter 11 Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Blue Books of Practical Neurology, 2003, 28, 285-313.	0.1	1
268	Chapter 9 Cellular Biological Effects of Copper/Zinc Superoxide Dismutase Mutations. Blue Books of Practical Neurology, 2003, , 237-257.	0.1	0
269	Cu/Zn superoxide dismutase (SOD1) mutations associated with familial amyotrophic lateral sclerosis (ALS) affect cellular free radical release in the presence of oxidative stress. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of	1.2	48
270	Differential gene expression in a cell culture model of SOD1-related familial motor neurone disease. Human Molecular Genetics, 2002, 11, 2061-2075.	2.9	31

#	Article	IF	CITATIONS
271	Motor neuron disease. , 2002, , 1863-1879.		Ο
272	Hereditary spastic paraplegia. International Review of Neurobiology, 2002, 53, 191-204.	2.0	7
273	Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain, 2002, 125, 1522-1533.	7.6	249
274	Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochemistry International, 2002, 40, 543-551.	3.8	175
275	The expression of the glutamate re-uptake transporter excitatory amino acid transporter 1 (EAAT1) in the normal human CNS and in motor neurone disease: an immunohistochemical study. Neuroscience, 2002, 109, 27-44.	2.3	39
276	Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle and Nerve, 2002, 26, 438-458.	2.2	281
277	Cultured glial cells are resistant to the effects of motor neurone disease-associated SOD1 mutations. Neuroscience Letters, 2001, 302, 146-150.	2.1	7
278	Glutamine synthetase activity and expression are not affected by the development of motor neuronopathy in the G93A SOD-1/ALS mouse. Molecular Brain Research, 2001, 94, 131-136.	2.3	14
279	Mutation screening of manganese superoxide dismutase in amyotrophic lateral sclerosis. NeuroReport, 2001, 12, 2319-2322.	1.2	32
280	Genetic inroads in familial ALS. Nature Genetics, 2001, 29, 103-104.	21.4	34
281	Superoxide-induced nitric oxide release from cultured glial cells. Brain Research, 2001, 911, 203-210.	2.2	34
282	Screening of AP endonuclease as a candidate gene for amyotrophic lateral sclerosis (ALS). NeuroReport, 2000, 11, 1695-1697.	1.2	31
283	Expression of nitric oxide synthase isoforms in spinal cord in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2000, 1, 259-267.	1.2	28
284	Serum and cerebrospinal fluid biochemical markers of ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 2000, 1, 61-67.	1.2	8
285	Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. Journal of Neurology, 2000, 247, 117-127.	3.6	20
286	Poly(ADP–ribose) polymerase is found in both the nucleus and cytoplasm of human CNS neurons. Brain Research, 1999, 834, 182-185.	2.2	29
287	Mitochondrial enzyme activity in amyotrophic lateral sclerosis: Implications for the role of mitochondria in neuronal cell death. Annals of Neurology, 1999, 46, 787-790.	5.3	292
288	Calcium, glutamate, and amyotrophic lateral sclerosis: More evidence but no certainties. Annals of Neurology, 1999, 46, 803-805.	5.3	18

#	Article	IF	CITATIONS
289	The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. Journal of the Neurological Sciences, 1999, 170, 45-50.	0.6	121
290	Low expression of GluR2 AMPA receptor subunit protein by human motor neurons. NeuroReport, 1999, 10, 261-265.	1.2	51
291	Oxidative Stress and Motor Neurone Disease. Brain Pathology, 1999, 9, 165-186.	4.1	191
292	The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. European Journal of Neuroscience, 1998, 10, 2481-2489.	2.6	111
293	The expression of voltage-dependent calcium channel beta subunits in human hippocampus. Molecular Brain Research, 1998, 60, 259-269.	2.3	18
294	Amyotrophic Lateral Sclerosis Associated with Genetic Abnormalities in the Gene Encoding Cu/Zn Superoxide Dismutase: Molecular Pathology of Five New Cases, and Comparison with Previous Reports and 73 Sporadic Cases of ALS. Journal of Neuropathology and Experimental Neurology, 1998, 57, 895-904.	1.7	124
295	Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). NeuroReport, 1998, 9, 3967-3970.	1.2	157
296	Peroxynitrite and Hydrogen Peroxide Induced Cell Death in the NSC34 Neuroblastoma × Spinal Cord Cell Line: Role of Poly(ADPâ€Ribose) Polymerase. Journal of Neurochemistry, 1998, 70, 501-508.	3.9	91
297	CNS tissue Cu/Zn superoxide dismutase (SOD1) mutations in motor neurone disease (MND). NeuroReport, 1997, 8, 3923-3927.	1.2	27
298	Immunocytochemical study of the distribution of the free radical scavenging enzymes CU/ZN superoxide dismutase (SOD1); MN superoxide dismutase (MN SOD) and catalase in the normal human spinal cord and in motor neuron disease. Journal of the Neurological Sciences, 1997, 147, 115-125.	0.6	39
299	Expression of the glial glutamate transporter EAAT2 in the human CNS: an immunohistochemical study. Molecular Brain Research, 1997, 52, 17-31.	2.3	110
300	Differential Localization of Voltage-Dependent Calcium Channel α ₁ Subunits at the Human and Rat Neuromuscular Junction. Journal of Neuroscience, 1997, 17, 6226-6235.	3.6	78
301	Nonverbal visual attention, but not recognition memory or learning, processes are impaired in motor neurone disease. Neuropsychologia, 1996, 34, 377-385.	1.6	45
302	Familial amyotrophic lateral sclerosis with a mutation in exon 4 of the Cu/Zn superoxide dismutase gene: pathological and immunocytochemical changes. Acta Neuropathologica, 1996, 92, 395-403.	7.7	120
303	Oxidative Damage and Motor Neurone Disease Difficulties in the Measurement of Protein Carbonyls in Human Brain Tissue. Free Radical Research, 1996, 24, 397-406.	3.3	65
304	Quantitative Study of Synaptophysin Immunoreactivity of Cerebral Cortex and Spinal Cord in Motor Neuron Disease. Journal of Neuropathology and Experimental Neurology, 1995, 54, 673-679.	1.7	42
305	Oxidative damage to protein in sporadic motor neuron disease spinal cord. Annals of Neurology, 1995, 38, 691-695.	5.3	312
306	Distribution of AMPA-selective glutamate receptor subunits in the human hippocampus and cerebellum. Molecular Brain Research, 1995, 31, 17-32.	2.3	41

#	Article	IF	CITATIONS
307	The expression of neuronal voltage-dependent calcium channels in human cerebellum. Molecular Brain Research, 1995, 34, 271-282.	2.3	100
308	CSF and Plasma Amino Acid Levels in Motor Neuron Disease: Elevation of CSF Glutamate in a Subset of Patients. Experimental Neurology, 1995, 4, 209-216.	1.7	221
309	Neutron Activation Analysis of Trace Elements in Motor Neuron Disease Spinal Cord. Experimental Neurology, 1995, 4, 383-390.	1.7	33
310	The distribution of excitatory amino acid receptors in the normal human midbrain and basal ganglia with implications for Parkinson's disease: a quantitative autoradiographic study using [3H]MK-801, [3H]glycine, [3H]CNQX and [3H]kainate. Brain Research, 1994, 658, 209-218.	2.2	30
311	Excitotoxicity and motor neurone disease: A review of the evidence. Journal of the Neurological Sciences, 1994, 124, 6-13.	0.6	86
312	Identification of a novel exon 4 SOD1 mutation in a sporadic amyotrophic lateral sclerosis patient. Molecular and Cellular Probes, 1994, 8, 329-330.	2.1	43
313	N-methyl-d-aspartate (NMDA) receptors in the spinal cord and motor cortex in motor neuron disease: a quantitative autoradiographic study using [3H]MK-801. Brain Research, 1994, 637, 297-302.	2.2	37
314	Non-NMDA receptors in motor neuron disease (MND): a quantitative autoradiographic study in spinal cord and motor cortex using [3H]CNQX and [3H]kainate. Brain Research, 1994, 655, 186-194.	2.2	45
315	[3H]d-aspartate binding sites in the normal human spinal cord and changes in motor neuron disease: a quantitative autoradiographic study. Brain Research, 1994, 655, 195-201.	2.2	66
316	A quantitative autoradiographic study of [3H]kainate binding sites in the normal human spinal cord, brainstem and motor cortex. Brain Research, 1994, 641, 39-45.	2.2	19
317	Autoradiographic distribution of binding sites for the non-NMDA receptor antagonist [3H]CNQX in human motor cortex, brainstem and spinal cord. Brain Research, 1993, 630, 75-81.	2.2	27
318	The quantitative autoradiographic distribution of [3H]MK-801 binding sites in the normal human brainstem in relation to motor neuron disease. Brain Research, 1992, 572, 276-280.	2.2	28
319	The quantitative autoradiographic distribution of [3H]MK-801 binding sites in the normal human spinal cord. Brain Research, 1991, 539, 164-168.	2.2	76
320	Genome-Wide Analyses Identify KIF5A as a Novel ALS Gene. SSRN Electronic Journal, 0, , .	0.4	4
321	Mutations in the Glycosyltransferase Domain of GLT8D1 Cause Amyotrophic Lateral Sclerosis. SSRN Electronic Journal, 0, , .	0.4	0
322	Genome-Wide Identification of the Genetic Basis of Amyotrophic Lateral Sclerosis. SSRN Electronic Journal, O, , .	0.4	1