Patrick Cras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12124692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β–amyloid precursor protein gene. Nature Genetics, 1992, 1, 218-221.	21.4	715
2	A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurology, The, 2012, 11, 54-65.	10.2	565
3	Detection of Proteins in Normal and Alzheimer's Disease Cerebrospinal Fluid with a Sensitive Sandwich Enzymeâ€Linked Immunosorbent Assay. Journal of Neurochemistry, 1993, 61, 1828-1834.	3.9	474
4	European Society for Swallowing Disorders – European Union Geriatric Medicine Society white paper: oropharyngeal dysphagia as a geriatric syndrome. Clinical Interventions in Aging, 2016, Volume 11, 1403-1428.	2.9	445
5	A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies. JAMA Neurology, 2013, 70, 727.	9.0	374
6	Mapping of a gene predisposing to early–onset Alzheimer's disease to chromosome 14q24.3. Nature Genetics, 1992, 2, 335-339.	21.4	321
7	A Panâ€< scp>European Study of the <i>C9orf72</i> Repeat Associated with <scp>FTLD</scp> : Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Human Mutation, 2013, 34, 363-373.	2.5	247
8	The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathologica, 2012, 124, 353-372.	7.7	242
9	Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia. Neurobiology of Aging, 2008, 29, 1143-1159.	3.1	217
10	Molecular genetic analysis of familial early-onset Alzheimer's disease linked to chromosome 14q24.3. Human Molecular Genetics, 1995, 4, 2363-2371.	2.9	171
11	Investigating the role of rare heterozygous TREM2 variants in Alzheimer's disease and frontotemporal dementia. Neurobiology of Aging, 2014, 35, 726.e11-726.e19.	3.1	158
12	Loss of <i>TBK1</i> is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology, 2015, 85, 2116-2125.	1.1	151
13	Alzheimer and Parkinson Diagnoses in Progranulin Null Mutation Carriers in an Extended Founder Family. Archives of Neurology, 2007, 64, 1436.	4.5	143
14	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	7.7	123
15	TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain, 2011, 134, 808-815.	7.6	110
16	Dense-Core Senile Plaques in the Flemish Variant of Alzheimer's Disease Are Vasocentric. American Journal of Pathology, 2002, 161, 507-520.	3.8	108
17	Behavioral Disturbances without Amyloid Deposits in Mice Overexpressing Human Amyloid Precursor Protein with Flemish (A692G) or Dutch (E693Q) Mutation. Neurobiology of Disease, 2000, 7, 9-22.	4.4	100
18	Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathologica, 2014, 128, 397-410.	7.7	93

PATRICK CRAS

#	Article	IF	CITATIONS
19	<i>TBK1</i> Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Human Mutation, 2017, 38, 297-309.	2.5	87
20	Clinical features of <i>TBK1</i> carriers compared with <i>C9orf72</i> , <i>GRN</i> and non-mutation carriers in a Belgian cohort. Brain, 2016, 139, 452-467.	7.6	86
21	Distinct Clinical Characteristics of C9orf72 Expansion Carriers Compared With GRN, MAPT, and Nonmutation Carriers in a Flanders-Belgian FTLD Cohort. JAMA Neurology, 2013, 70, 365.	9.0	85
22	A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer's disease. Acta Neuropathologica, 2016, 132, 213-224.	7.7	83
23	Microglia are associated with the extracellular neurofibrillary tangles of alzheimer disease. Brain Research, 1991, 558, 312-314.	2.2	80
24	DLB and PDD: a role for mutations in dementia and Parkinson disease genes?. Neurobiology of Aging, 2012, 33, 629.e5-629.e18.	3.1	73
25	European white paper: oropharyngeal dysphagia in head and neck cancer. European Archives of Oto-Rhino-Laryngology, 2021, 278, 577-616.	1.6	66
26	Investigating the role of ALS genes CHCHD10 and TUBA4A in Belgian FTD-ALS spectrum patients. Neurobiology of Aging, 2017, 51, 177.e9-177.e16.	3.1	60
27	Global investigation and meta-analysis of the <i>C9orf72</i> (G ₄ C ₂) _n repeat in Parkinson disease. Neurology, 2014, 83, 1906-1913.	1.1	56
28	Founder mutation p.R1441C in the leucine-rich repeat kinase 2 gene in Belgian Parkinson's disease patients. European Journal of Human Genetics, 2008, 16, 471-479.	2.8	47
29	A Decade of Cerebrospinal Fluid Biomarkers for Alzheimer's Disease in Belgium. Journal of Alzheimer's Disease, 2016, 54, 383-395.	2.6	47
30	Identification of 2 Loci at Chromosomes 9 and 14 in a Multiplex Family With Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Archives of Neurology, 2010, 67, 606-16.	4.5	47
31	Mutated ATP10B increases Parkinson's disease risk by compromising lysosomal glucosylceramide export. Acta Neuropathologica, 2020, 139, 1001-1024.	7.7	46
32	Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration. Alzheimer's Research and Therapy, 2018, 10, 31.	6.2	42
33	Loss of DPP6 in neurodegenerative dementia: a genetic player in the dysfunction of neuronal excitability. Acta Neuropathologica, 2019, 137, 901-918.	7.7	37
34	Mutations in glucocerebrosidase are a major genetic risk factor for Parkinson's disease and increase susceptibility to dementia in a Flanders-Belgian cohort. Neuroscience Letters, 2016, 629, 160-164.	2.1	34
35	NEK1 genetic variability in a Belgian cohort of ALS and ALS-FTD patients. Neurobiology of Aging, 2018, 61, 255.e1-255.e7.	3.1	32
36	Phenotypic characteristics of Alzheimer patients carrying an <i>ABCA7</i> mutation. Neurology, 2016, 86, 2126-2133.	1.1	29

PATRICK CRAS

#	Article	lF	CITATIONS
37	Rare Variants in <i>PLD3</i> Do Not Affect Risk for Early-Onset Alzheimer Disease in a European Consortium Cohort. Human Mutation, 2015, 36, 1226-1235.	2.5	23
38	Rare nonsynonymous variants in SORT1 are associated with increased risk for frontotemporal dementia. Neurobiology of Aging, 2018, 66, 181.e3-181.e10.	3.1	19
39	Genetic screening in early-onset dementia patients with unclear phenotype: relevance for clinical diagnosis. Neurobiology of Aging, 2018, 69, 292.e7-292.e14.	3.1	18
40	Clinical variability and onset age modifiers in an extended Belgian GRN founder family. Neurobiology of Aging, 2018, 67, 84-94.	3.1	17
41	No supportive evidence for TIA1 gene mutations in a European cohort of ALS-FTD spectrum patients. Neurobiology of Aging, 2018, 69, 293.e9-293.e11.	3.1	15
42	Investigating the role of filamin C in Belgian patients with frontotemporal dementia linked to GRN deficiency in FTLD-TDP brains. Acta Neuropathologica Communications, 2015, 3, 68.	5.2	13
43	No added diagnostic value of non-phosphorylated tau fraction (p-taurel) in CSF as a biomarker for differential dementia diagnosis. Alzheimer's Research and Therapy, 2017, 9, 49.	6.2	11
44	Extended FTLD pedigree segregating a Belgian GRN-null mutation: neuropathological heterogeneity in one family. Alzheimer's Research and Therapy, 2018, 10, 7.	6.2	10
45	Family-based exome sequencing identifies RBM45 as a possible candidate gene for frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiology of Disease, 2021, 156, 105421.	4.4	2
46	[O2–13–05]: DELETERIOUS <i>ABCA7</i> MUTATIONS CONTRIBUTE TO EARLYâ€ONSET ALZHEIMER's DISEA AND ARE SUBJECT TO TRANSCRIPT RESCUE MECHANISMS. Alzheimer's and Dementia, 2017, 13, P589.	ASE 0.8	0
47	βâ€Amyloid Precursor Protein and Earlyâ€Onset Alzheimer's Disease. Novartis Foundation Symposium, 1996, 199, 170-180.	1.1	0