
Robin F Krimm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12124/publications.pdf Version: 2024-02-01

PORIN F KDIMM

#	Article	IF	CITATIONS
1	Overexpression of Brain-Derived Neurotrophic Factor Enhances Sensory Innervation and Selectively Increases Neuron Number. Journal of Neuroscience, 1999, 19, 5919-5931.	3.6	100
2	Fate mapping of mammalian embryonic taste bud progenitors. Development (Cambridge), 2009, 136, 1519-1528.	2.5	83
3	Epithelial Overexpression of BDNF or NT4 Disrupts Targeting of Taste Neurons That Innervate the Anterior Tongue. Developmental Biology, 2001, 232, 508-521.	2.0	71
4	Innervation of single fungiform taste buds during development in rat. Journal of Comparative Neurology, 1998, 398, 13-24.	1.6	56
5	Epithelial-Derived Brain-Derived Neurotrophic Factor Is Required for Gustatory Neuron Targeting during a Critical Developmental Period. Journal of Neuroscience, 2009, 29, 3354-3364.	3.6	42
6	Factors that regulate embryonic gustatory development. BMC Neuroscience, 2007, 8, S4.	1.9	41
7	Epithelial overexpression of BDNF and NT4 produces distinct gustatory axon morphologies that disrupt initial targeting. Developmental Biology, 2006, 292, 457-468.	2.0	39
8	BDNF is required for the survival of differentiated geniculate ganglion neurons. Developmental Biology, 2010, 340, 419-429.	2.0	38
9	Early prenatal critical period for chorda tympani nerve terminal field development. Journal of Comparative Neurology, 1997, 378, 254-264.	1.6	35
10	Developmental expression of <i>Bdnf, Ntf4/5,</i> and <i>TrkB</i> in the mouse peripheral taste system. Developmental Dynamics, 2010, 239, 2637-2646.	1.8	34
11	Neuron/target plasticity in the peripheral gustatory system. Journal of Comparative Neurology, 2004, 472, 183-192.	1.6	29
12	Overexpression of neurotrophin 4 in skin enhances myelinated sensory endings but does not influence sensory neuron number. Journal of Comparative Neurology, 2006, 498, 455-465.	1.6	29
13	Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds. ENeuro, 2015, 2, ENEURO.0097-15.2015.	1.9	29
14	NT3 expressed in skin causes enhancement of SA1 sensory neurons that leads to postnatal enhancement of Merkel cells. Journal of Comparative Neurology, 2004, 471, 352-360.	1.6	27
15	Refinement of innervation accuracy following initial targeting of peripheral gustatory fibers. Journal of Neurobiology, 2006, 66, 1033-1043.	3.6	27
16	The transcription factor Phox2b distinguishes between oral and nonâ€oral sensory neurons in the geniculate ganglion. Journal of Comparative Neurology, 2017, 525, 3935-3950.	1.6	26
17	Lingual and palatal gustatory afferents each depend on both BDNF and NTâ€4, but the dependence is greater for lingual than palatal afferents. Journal of Comparative Neurology, 2010, 518, 3290-3301.	1.6	25
18	Neuron/target matching between chorda tympani neurons and taste buds during postnatal rat development. Journal of Neurobiology, 2000, 43, 98-106.	3.6	24

Robin F Krimm

#	Article	IF	CITATIONS
19	Neurotrophin-4 regulates the survival of gustatory neurons earlier in development using a different mechanism than brain-derived neurotrophic factor. Developmental Biology, 2012, 365, 50-60.	2.0	22
20	Cutaneous overexpression of neurotrophin-3 (NT3) selectively restores sensory innervation in NT3 gene knockout mice. , 2000, 43, 40-49.		20
21	Early dietary sodium restriction disrupts the peripheral anatomical development of the gustatory system. , 1999, 39, 218-226.		17
22	Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation. Developmental Biology, 2015, 405, 225-236.	2.0	17
23	BDNF and NT4 play interchangeable roles in gustatory development. Developmental Biology, 2014, 386, 308-320.	2.0	15
24	Variable Branching Characteristics of Peripheral Taste Neurons Indicates Differential Convergence. Journal of Neuroscience, 2021, 41, 4850-4866.	3.6	15
25	Taste bud-derived BDNF maintains innervation of a subset of TrkB-expressing gustatory nerve fibers. Molecular and Cellular Neurosciences, 2017, 82, 195-203.	2.2	14
26	Taste Neurons Consist of Both a Large TrkB-Receptor-Dependent and a Small TrkB-Receptor-Independent Subpopulation. PLoS ONE, 2013, 8, e83460.	2.5	13
27	The neurotrophin receptor p75 regulates gustatory axon branching and promotes innervation of the tongue during development. Neural Development, 2014, 9, 15.	2.4	13
28	BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section. Experimental Neurology, 2017, 293, 27-42.	4.1	13
29	Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds. PLoS ONE, 2016, 11, e0148315.	2.5	11
30	Quantitative Relationships between Taste Bud Development and Gustatory Ganglion Cellsa. Annals of the New York Academy of Sciences, 1998, 855, 70-75.	3.8	10
31	Exuberant Neuronal Convergence onto Reduced Taste Bud Targets with Preservation of Neural Specificity in Mice Overexpressing Neurotrophin in the Tongue Epithelium. Journal of Neuroscience, 2007, 27, 13875-13881.	3.6	9
32	Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 1294-1302.	2.0	8
33	TrkB expression and dependence divides gustatory neurons into three subpopulations. Neural Development, 2019, 14, 3.	2.4	7
34	Maintenance of Mouse Gustatory Terminal Field Organization Is Dependent on BDNF at Adulthood. Journal of Neuroscience, 2018, 38, 6873-6887.	3.6	6
35	Whole-Mount Staining, Visualization, and Analysis of Fungiform, Circumvallate, and Palate Taste Buds. Journal of Visualized Experiments, 2021, , .	0.3	3
36	Variation in taste ganglion neuron morphology: insights into taste function and plasticity. Current Opinion in Physiology, 2021, 20, 134-139.	1.8	2