Ryan S Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12123797/publications.pdf

Version: 2024-02-01

40 papers

2,287 citations

³⁶¹⁴¹³
20
h-index

36 g-index

41 all docs

41 docs citations

41 times ranked 1889 citing authors

#	Article	IF	CITATIONS
1	The Psyche Topography and Geomorphology Investigation. Space Science Reviews, 2022, 218, 1.	8.1	4
2	Distinguishing the Origin of Asteroid (16) Psyche. Space Science Reviews, 2022, 218, 17.	8.1	13
3	The JPL Planetary and Lunar Ephemerides DE440 and DE441. Astronomical Journal, 2021, 161, 105.	4.7	177
4	Estimating Asteroid Mass from Optically Tracked Radio Beacons. Journal of Spacecraft and Rockets, 2021, 58, 444-455.	1.9	2
5	A Recipe for the Geophysical Exploration of Enceladus. Planetary Science Journal, 2021, 2, 157.	3.6	14
6	Reduced Nonlinear Model for Orbit Uncertainty Propagation and Estimation. Journal of Guidance, Control, and Dynamics, 2021, 44, 1578-1592.	2.8	3
7	Ephemeris and hazard assessment for near-Earth asteroid (101955) Bennu based on OSIRIS-REx data. Icarus, 2021, 369, 114594.	2.5	28
8	Detection of the Chandler Wobble of Mars From Orbiting Spacecraft. Geophysical Research Letters, 2020, 47, e2020GL090568.	4.0	37
9	Advanced Pointing Imaging Camera (APIC) for planetary science and mission opportunities. Planetary and Space Science, 2020, 194, 105095.	1.7	10
10	Resonance locking in giant planets indicated by the rapid orbital expansion of Titan. Nature Astronomy, 2020, 4, 1053-1058.	10.1	87
11	Efficient method for approximating nonlinear dynamics: applications to uncertainty propagation and estimation., 2020,,.		1
12	Tectonic analysis of fracturing associated with occator crater. Icarus, 2019, 320, 49-59.	2.5	21
13	The First Two Years of juno Spacecraft Astrometry with the Very Long Baseline Array. , 2019, , .		1
14	Surface Roughness and Gravitational Slope Distributions of Vesta and Ceres. Journal of Geophysical Research E: Planets, 2019, 124, 14-30.	3.6	12
15	Search for OH 18 cm Radio Emission from 11/2017 U1 with the Green Bank Telescope. Astronomical Journal, 2018, 155, 185.	4.7	11
16	Floorâ€Fractured Craters on Ceres and Implications for Interior Processes. Journal of Geophysical Research E: Planets, 2018, 123, 3188-3204.	3.6	13
17	Breakthrough Listen Observations of 1I/′Oumuamua with the GBT. Research Notes of the AAS, 2018, 2, 9.	0.7	17
18	Precession of Mercury's Perihelion from Ranging to the MESSENGER Spacecraft. Astronomical Journal, 2017, 153, 121.	4.7	134

#	Article	IF	CITATIONS
19	The interior structure of Ceres as revealed by surface topography. Earth and Planetary Science Letters, 2017, 476, 153-164.	4.4	117
20	SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES. Astrophysical Journal Letters, 2016, 817, L22.	8.3	42
21	An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus, 2016, 274, 253-260.	2.5	134
22	The Deep-space Positioning System Concept: Automating Complex Navigation Operations Beyond the Earth., 2016,,.		4
23	Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission. Science, 2016, 354, 438-441.	12.6	38
24	Composition and structure of the shallow subsurface of Ceres revealed by craterÂmorphology. Nature Geoscience, 2016, 9, 538-542.	12.9	118
25	VERY LONG BASELINE ARRAY ASTROMETRIC OBSERVATIONS OF MARS ORBITERS. Astronomical Journal, 2015, 150, 121.	4.7	11
26	Improved detection of tides at Europa with radiometric and optical tracking during flybys. Planetary and Space Science, 2015, 112, 10-14.	1.7	17
27	New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus, 2014, 229, 340-347.	2.5	41
28	Highâ€resolution lunar gravity fields from the GRAIL Primary and Extended Missions. Geophysical Research Letters, 2014, 41, 1452-1458.	4.0	103
29	Lunar interior properties from the GRAIL mission. Journal of Geophysical Research E: Planets, 2014, 119, 1546-1578.	3.6	185
30	The Scientific Measurement System of the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Space Science Reviews, 2013, 178, 25-55.	8.1	32
31	Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Science, 2013, 339, 668-671.	12.6	389
32	The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission. Journal of Geophysical Research E: Planets, 2013, 118, 1415-1434.	3.6	143
33	The Scientific Measurement System of the Gravity Recovery and Interior Laboratory (GRAIL) Mission. , 2013, , 25-55.		2
34	Gravity Recovery and Interior Laboratory Simulations of Static and Temporal Gravity Field. Journal of Spacecraft and Rockets, 2012, 49, 390-400.	1.9	22
35	Detecting tides and gravity at Europa from multiple close flybys. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	16
36	Trajectory Reconstruction of a Sounding Rocket Using Intertial Measurement Unit and Landmark Data. Journal of Spacecraft and Rockets, 2010, 47, 1003-1009.	1.9	2

#	Article	IF	CITATION
37	Estimating Small-Body Gravity Field from Shape Model and Navigation Data. Journal of Guidance, Control, and Dynamics, 2010, 33, 212-221.	2.8	54
38	Nonlinear Semi-Analytic Methods for Trajectory Estimation. Journal of Guidance, Control, and Dynamics, 2007, 30, 1668-1676.	2.8	60
39	Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design. Journal of Guidance, Control, and Dynamics, 2006, 29, 1367-1375.	2.8	164
40	Deflection of spacecraft trajectories as a new test of general relativity: Determining the parametrized post-Newtonian parameters \hat{l}^2 and \hat{l}^3 . Physical Review D, 2004, 69, .	4.7	8