Sheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1212345/publications.pdf Version: 2024-02-01

SHENC 7HANC

#	Article	IF	CITATIONS
1	Nanoporous tin oxides for efficient electrochemical CO2 reduction to formate. Green Chemical Engineering, 2022, 3, 138-145.	6.3	13
2	Boosting oxygen evolution over inverse spinel Fe-Co-Mn oxide nanocubes through electronic structure engineering. Chemical Engineering Journal, 2022, 433, 134446.	12.7	16
3	Electrode Engineering for Electrochemical CO ₂ Reduction. Energy & Fuels, 2022, 36, 4234-4249.	5.1	22
4	Ordered mesoporous carbon spheres assisted Ru nanoclusters/RuO2 with redistribution of charge density for efficient CO2 methanation in a novel H2/CO2 fuel cell. Journal of Energy Chemistry, 2022, 72, 116-124.	12.9	11
5	Iron Nanoparticles Tuned to Catalyze CO ₂ Electroreduction in Acidic Solutions through Chemical Microenvironment Engineering. ACS Catalysis, 2022, 12, 7517-7523.	11.2	38
6	Highly efficient CO ₂ electrolysis within a wide operation window using octahedral tin oxide single crystals. Journal of Materials Chemistry A, 2021, 9, 7848-7856.	10.3	42
7	Efficient electrochemical reduction of CO ₂ promoted by the electrospun Cu _{1.96} S/Cu tandem catalyst. Nanoscale, 2021, 13, 16986-16994.	5.6	8
8	Revisiting Chlor-Alkali Electrolyzers: from Materials to Devices. Transactions of Tianjin University, 2021, 27, 202-216.	6.4	32
9	Self-healing polyelectrolyte complex coating for flame retardant flexible polyurethane foam with enhanced mechanical property. Composites Part B: Engineering, 2021, 219, 108886.	12.0	71
10	CO ₂ Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Accounts of Chemical Research, 2020, 53, 255-264.	15.6	391
11	Stable Surface-Anchored Cu Nanocubes for CO ₂ Electroreduction to Ethylene. ACS Applied Nano Materials, 2020, 3, 8328-8334.	5.0	41
12	2D surface induced self-assembly of Pd nanocrystals into nanostrings for enhanced formic acid electrooxidation. Journal of Materials Chemistry A, 2020, 8, 17128-17135.	10.3	9
13	First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings. Sustainable Energy and Fuels, 2020, 4, 5417-5432.	4.9	86
14	Surface-functionalized palladium catalysts for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 15884-15890.	10.3	55
15	Recent Advances in Electrochemical CO ₂ Reduction Using CopperBased Catalysts. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	14
16	Octahedral SnO2 Single Crystals for Selective CO2 Electroreduction. ECS Meeting Abstracts, 2020, MA2020-02, 3233-3233.	0.0	0
17	Tuning the electronic structure of platinum nanocrystals towards high efficient ethanol oxidation. Chinese Journal of Catalysis, 2019, 40, 1904-1911.	14.0	14
18	Atomically thin micas as proton-conducting membranes. Nature Nanotechnology, 2019, 14, 962-966.	31.5	45

SHENG ZHANG

#	Article	IF	CITATIONS
19	Perfect proton selectivity in ion transport through two-dimensional crystals. Nature Communications, 2019, 10, 4243.	12.8	60
20	Electrochemical Conversion of CO2 into Valued Added Products on High-Surface-Area Tin Catalysts. ECS Meeting Abstracts, 2019, , .	0.0	0
21	Giant photoeffect in proton transport through graphene membranes. Nature Nanotechnology, 2018, 13, 300-303.	31.5	59
22	Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nature Communications, 2017, 8, 15215.	12.8	119
23	Graphene Quantum Dots: Syntheses, Properties, and Biological Applications. , 2016, , 171-192.		17
24	Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15809-15814.	7.1	140
25	3D-niobium oxide supported platinum as an effective and durable oxygen reduction catalyst. Catalysis Communications, 2015, 68, 67-72.	3.3	9
26	Pt/Tin Oxide/Carbon Nanocomposites as Promising Oxygen Reduction Electrocatalyst with Improved Stability and Activity. Electrochimica Acta, 2014, 117, 413-419.	5.2	44
27	A Facile Route to Fabricate Effective Pt/IrO2 Bifunctional Catalyst for Unitized Regenerative Fuel Cell. Catalysis Letters, 2014, 144, 242-247.	2.6	20
28	Polyethylenimine-Enhanced Electrocatalytic Reduction of CO ₂ to Formate at Nitrogen-Doped Carbon Nanomaterials. Journal of the American Chemical Society, 2014, 136, 7845-7848.	13.7	591
29	Polyelectrolyte Assisted Synthesis and Enhanced Oxygen Reduction Activity of Pt Nanocrystals with Controllable Shape and Size. ACS Applied Materials & Interfaces, 2014, 6, 14043-14049.	8.0	49
30	Single catalyst electrocatalytic reduction of CO ₂ in water to H ₂ +CO syngas mixtures with water oxidation to O ₂ . Energy and Environmental Science, 2014, 7, 4007-4012.	30.8	120
31	Rapid Selective Electrocatalytic Reduction of Carbon Dioxide to Formate by an Iridium Pincer Catalyst Immobilized on Carbon Nanotube Electrodes. Angewandte Chemie - International Edition, 2014, 53, 8709-8713.	13.8	221
32	Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate. Journal of the American Chemical Society, 2014, 136, 1734-1737.	13.7	1,001
33	Ionic liquids for energy, materials, and medicine. Chemical Communications, 2014, 50, 9228-9250.	4.1	447
34	Edgeâ€Selectively Sulfurized Graphene Nanoplatelets as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Advanced Materials, 2013, 25, 6138-6145.	21.0	537
35	Effects and Mechanism Research of the Desilication Pretreatment for High-Aluminum Fly Ash. Energy & Fuels, 2013, 27, 6948-6954.	5.1	37
36	IrO2-graphene hybrid as an active oxygen evolution catalyst for water electrolysis. International Journal of Hydrogen Energy, 2013, 38, 9217-9222.	7.1	37

SHENG ZHANG

#	Article	IF	CITATIONS
37	Pt–rGO–TiO2 nanocomposite by UV-photoreduction method as promising electrocatalyst for methanol oxidation. International Journal of Hydrogen Energy, 2013, 38, 12310-12317.	7.1	39
38	Recent progress in nanostructured electrocatalysts for PEM fuel cells. Journal of Materials Chemistry A, 2013, 1, 4631.	10.3	172
39	Tungsten doped Co–Se nanocomposites as an efficient non precious metal catalyst for oxygen reduction. Electrochimica Acta, 2013, 91, 179-184.	5.2	27
40	Metal-Free Electrocatalysts for Oxygen Reduction. Lecture Notes in Energy, 2013, , 375-389.	0.3	3
41	Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports, 2013, 3, 1810.	3.3	300
42	Niobium Dioxide Facilitating Methanol Electrooxidation on Pt/C Catalyst by Synergistic Effect. Fuel Cells, 2013, 13, 895-902.	2.4	3
43	Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 18932-18935.	13.7	545
44	Perylene Monolayer Protected Gold Nanorods: Unique Optical, Electronic Properties and Self-Assemblies. Journal of Physical Chemistry C, 2012, 116, 10396-10404.	3.1	43
45	Electrochemical studies of Pt/Ir–IrO2 electrocatalyst as a bifunctional oxygen electrode. International Journal of Hydrogen Energy, 2012, 37, 59-67.	7.1	95
46	Pt/porous-IrO2 nanocomposite as promising electrocatalyst for unitized regenerative fuel cell. Electrochemistry Communications, 2012, 14, 63-66.	4.7	87
47	Role of Pt-pyridinic nitrogen sites in methanol oxidation on Pt/polypyrrole-carbon black Catalyst. Journal of Power Sources, 2012, 197, 44-49.	7.8	48
48	Investigation on the durability of direct dimethyl ether fuel cell. Part I: Anode degradation. Journal of Power Sources, 2012, 198, 170-175.	7.8	10
49	Effect of Se in Co-based selenides towards oxygen reduction electrocatalytic activity. Journal of Power Sources, 2012, 206, 103-107.	7.8	30
50	Preparation of Pt/Irx(IrO2)10â^'x bifunctional oxygen catalyst for unitized regenerative fuel cell. Journal of Power Sources, 2012, 210, 321-326.	7.8	55
51	Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets. ACS Nano, 2011, 5, 1785-1791.	14.6	293
52	Graphene–Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO ₄ [–] from Wastewater. ACS Applied Materials & Interfaces, 2011, 3, 3633-3637.	8.0	109
53	Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation. Chemistry of Materials, 2011, 23, 1079-1081.	6.7	366
54	Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry, 2011, 21, 5319.	6.7	219

SHENG ZHANG

#	Article	IF	CITATIONS
55	In situ ion exchange preparation of Pt/carbon nanotubes electrode: Effect of two-step oxidation of carbon nanotubes. Journal of Power Sources, 2011, 196, 9955-9960.	7.8	11
56	Self-assembly of Pt nanoparticles on highly graphitized carbon nanotubes as an excellent oxygen-reduction catalyst. Applied Catalysis B: Environmental, 2011, 102, 372-377.	20.2	104
57	Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 2010, 20, 7491.	6.7	1,040
58	Low-cost and durable catalyst support for fuel cells: Graphite submicronparticles. Journal of Power Sources, 2010, 195, 457-460.	7.8	49
59	Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation. Journal of Power Sources, 2010, 195, 1103-1106.	7.8	133
60	Electrostatic Selfâ€Assembly of a Ptâ€aroundâ€Au Nanocomposite with High Activity towards Formic Acid Oxidation. Angewandte Chemie - International Edition, 2010, 49, 2211-2214.	13.8	295
61	Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. Journal of Power Sources, 2010, 195, 1805-1811.	7.8	78
62	Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. Journal of Power Sources, 2010, 195, 4600-4605.	7.8	378
63	Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst. Journal of Materials Chemistry, 2010, 20, 2826.	6.7	153
64	Stabilization of platinum nanoparticle electrocatalysts for oxygen reduction using poly(diallyldimethylammonium chloride). Journal of Materials Chemistry, 2009, 19, 7995.	6.7	87
65	Effect of carbon black support corrosion on the durability of Pt/C catalyst. Journal of Power Sources, 2007, 171, 331-339.	7.8	383