Thomas L Schwarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1212265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuronal mitochondria transport Pink1 mRNA via synaptojanin 2 to support local mitophagy. Neuron, 2022, 110, 1516-1531.e9.	8.1	55
2	Serine/Threonine Protein Phosphatase 2A Regulates the Transport of Axonal Mitochondria. Frontiers in Cellular Neuroscience, 2022, 16, 852245.	3.7	4
3	APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer's pathology in trisomy 21 neurons. Molecular Psychiatry, 2022, 27, 1970-1989.	7.9	14
4	Mitochondrial hitch-hiking of <i>Pink1</i> mRNA supports axonal mitophagy. Autophagy, 2022, , 1-2.	9.1	0
5	zapERtrap: A light-regulated ER release system reveals unexpected neuronal trafficking pathways. Journal of Cell Biology, 2021, 220, .	5.2	10
6	FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose supply. Journal of Cell Biology, 2021, 220, .	5.2	31
7	Kymolyzer, a Semiâ€Autonomous Kymography Tool to Analyze Intracellular Motility. Current Protocols in Cell Biology, 2020, 87, e107.	2.3	19
8	QuoVadoPro, an Autonomous Tool for Measuring Intracellular Dynamics Using Temporal Variance. Current Protocols in Cell Biology, 2020, 87, e108.	2.3	6
9	A High-Content Screen Identifies TPP1 and Aurora B as Regulators of Axonal Mitochondrial Transport. Cell Reports, 2019, 28, 3224-3237.e5.	6.4	31
10	The light-sensitive dimerizer zapalog reveals distinct modes of immobilization for axonal mitochondria. Nature Cell Biology, 2019, 21, 768-777.	10.3	56
11	Kinetochore Proteins Have a Post-Mitotic Function in Neurodevelopment. Developmental Cell, 2019, 48, 873-882.e4.	7.0	30
12	<i>O</i> -GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance. Journal of Neuroscience, 2017, 37, 2125-2136.	3.6	38
13	Neurotoxic mechanisms of paclitaxel are local to the distal axon and independent of transport defects. Experimental Neurology, 2017, 288, 153-166.	4.1	85
14	Mitostasis in Neurons: Maintaining Mitochondria in an Extended Cellular Architecture. Neuron, 2017, 96, 651-666.	8.1	379
15	A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity. PLoS ONE, 2017, 12, e0184672.	2.5	37
16	The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration. Neuron, 2016, 92, 1294-1307.	8.1	150
17	Miro phosphorylation sites regulate Parkin recruitment and mitochondrial motility. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6097-E6106.	7.1	122
18	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

THOMAS L SCHWARZ

#	Article	IF	CITATIONS
19	Filamin, a synaptic organizer in Drosophila, determines glutamate receptor composition and membrane growth. ELife, 2016, 5, .	6.0	17
20	For Parkin, it's not all or nothing. EMBO Journal, 2014, 33, 277-279.	7.8	7
21	The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology, 2014, 76, 175-183.	4.1	185
22	Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. Journal of Cell Biology, 2014, 206, 655-670.	5.2	415
23	Glucose Regulates Mitochondrial Motility via Milton Modification by O-GlcNAc Transferase. Cell, 2014, 158, 54-68.	28.9	223
24	Ral mediates activity-dependent growth of postsynaptic membranes via recruitment of the exocyst. EMBO Journal, 2013, 32, 2039-2055.	7.8	55
25	Mitochondrial Trafficking in Neurons. Cold Spring Harbor Perspectives in Biology, 2013, 5, a011304-a011304.	5.5	439
26	PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility. Cell, 2011, 147, 893-906.	28.9	997
27	The nuclear import of Frizzled2-C by Importins-β11 and α2 promotes postsynaptic development. Nature Neuroscience, 2010, 13, 935-943.	14.8	82
28	Drosophila Importin-Î ± 2 Is Involved in Synapse, Axon and Muscle Development. PLoS ONE, 2010, 5, e15223.	2.5	20
29	Chapter 18 Imaging Axonal Transport of Mitochondria. Methods in Enzymology, 2009, 457, 319-333.	1.0	57
30	The Mechanism of Ca2+-Dependent Regulation of Kinesin-Mediated Mitochondrial Motility. Cell, 2009, 136, 163-174.	28.9	743
31	Presynaptic α2Î-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions. Nature Neuroscience, 2009, 12, 1415-1423.	14.8	137
32	Axonal transport and the delivery of pre-synaptic components. Current Opinion in Neurobiology, 2008, 18, 495-503.	4.2	146
33	A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport. Nature Neuroscience, 2007, 10, 980-989.	14.8	144
34	Transmitter Release at the Neuromuscular Junction. International Review of Neurobiology, 2006, 75, 105-144.	2.0	19
35	Altered Synaptic Development and Active Zone Spacing in Endocytosis Mutants. Current Biology, 2006, 16, 591-598.	3.9	160
36	Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. Journal of Cell Biology, 2006, 173, 545-557.	5.2	562

THOMAS L SCHWARZ

#	Article	IF	CITATION
37	A Slowed Classical Pathway Rather Than Kiss-and-Run Mediates Endocytosis at Synapses Lacking Synaptojanin and Endophilin. Cell, 2005, 123, 521-533.	28.9	176
38	Synaptotagmin promotes both vesicle fusion and recycling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16401-16402.	7.1	19
39	Mutations in the Exocyst Component Sec5 Disrupt Neuronal Membrane Traffic, but Neurotransmitter Release Persists. Neuron, 2003, 37, 433-447.	8.1	182
40	Axonal Transport of Mitochondria to Synapses Depends on Milton, a Novel Drosophila Protein. Neuron, 2002, 36, 1063-1077.	8.1	567
41	Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell, 1993, 73, 1281-1290.	28.9	247
42	A peptide action in a lobster neuromuscular preparation. Journal of Neurobiology, 1980, 11, 623-628.	3.6	77
43	Amines and A Peptide As Neurohormones in Lobsters: Actions on Neuromuscular Preparations and Preliminary Behavioural Studies. Journal of Experimental Biology, 1980, 89, 159-175.	1.7	204