Sébastien Papot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/121214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A β-Cyclodextrin-Albumin Conjugate for Enhancing Therapeutic Efficacy of Cytotoxic Drugs. Bioconjugate Chemistry, 2022, 33, 1138-1144.	3.6	0
2	Bioorthogonal Reactions in Animals. ChemBioChem, 2021, 22, 100-113.	2.6	22
3	Cell–cell interactions <i>via</i> non-covalent click chemistry. Chemical Science, 2021, 12, 9017-9021.	7.4	11
4	Enzymeâ€Cleavable Linkers for Protein Chemical Synthesis through Solidâ€Phase Ligations. Angewandte Chemie, 2021, 133, 18760-18766.	2.0	1
5	Enzymeâ€Cleavable Linkers for Protein Chemical Synthesis through Solidâ€Phase Ligations. Angewandte Chemie - International Edition, 2021, 60, 18612-18618.	13.8	7
6	Absolute configuration of a [1]rotaxane determined from vibrational and electronic circular dichroism spectra. Chirality, 2021, 33, 773-782.	2.6	2
7	Diastereoselective synthesis of [1]rotaxanes <i>via</i> an active metal template strategy. Chemical Science, 2021, 12, 2521-2526.	7.4	15
8	In vivo synthesis of triple-loaded albumin conjugate for efficient targeted cancer chemotherapy. Journal of Controlled Release, 2020, 327, 19-25.	9.9	17
9	Development of an embedded multimodality imaging platform for onco-pharmacology using a smart anticancer prodrug as an example. Scientific Reports, 2020, 10, 2661.	3.3	6
10	Volatile Organic Compound Based Probe for Induced Volatolomics of Cancers. Angewandte Chemie - International Edition, 2019, 58, 17563-17566.	13.8	31
11	Volatile Organic Compound Based Probe for Induced Volatolomics of Cancers. Angewandte Chemie, 2019, 131, 17727-17730.	2.0	3
12	The Lossen rearrangement from free hydroxamic acids. Organic and Biomolecular Chemistry, 2019, 17, 5420-5427.	2.8	34
13	Controlled Release of a Micelle Payload via Sequential Enzymatic and Bioorthogonal Reactions in Living Systems. Angewandte Chemie - International Edition, 2019, 58, 6366-6370.	13.8	45
14	Monodisperse polysarcosine-based highly-loaded antibody-drug conjugates. Chemical Science, 2019, 10, 4048-4053.	7.4	59
15	Controlled Release of a Micelle Payload via Sequential Enzymatic and Bioorthogonal Reactions in Living Systems. Angewandte Chemie, 2019, 131, 6432-6436.	2.0	11
16	Monitoring glycosidase activity for clustered sugar substrates, a study on β-glucuronidase. RSC Advances, 2019, 9, 40263-40267.	3.6	5
17	Reduction–rebridging strategy for the preparation of ADPN-based antibody–drug conjugates. MedChemComm, 2018, 9, 827-830.	3.4	24
18	A β-glucuronidase-responsive albumin-binding prodrug programmed for the double release of monomethyl auristatin E. MedChemComm. 2018. 9. 2068-2071.	3.4	14

SéBASTIEN PAPOT

#	Article	IF	CITATIONS
19	A β-glucuronidase-responsive albumin-binding prodrug for potential selective kinase inhibitor-based cancer chemotherapy. European Journal of Medicinal Chemistry, 2018, 158, 1-6.	5.5	21
20	Targeting the tumour microenvironment with an enzyme-responsive drug delivery system for the efficient therapy of breast and pancreatic cancers. Chemical Science, 2017, 8, 3427-3433.	7.4	95
21	In situ targeted activation of an anticancer agent using ultrasound-triggered release of composite droplets. European Journal of Medicinal Chemistry, 2017, 142, 2-7.	5.5	7
22	Development and evaluation of β-galactosidase-sensitive antibody-drug conjugates. European Journal of Medicinal Chemistry, 2017, 142, 376-382.	5.5	38
23	Rotaxane-based architectures for biological applications. Comptes Rendus Chimie, 2016, 19, 103-112.	0.5	39
24	A mechanically interlocked molecular system programmed for the delivery of an anticancer drug. Chemical Science, 2015, 6, 2608-2613.	7.4	124
25	Evaluation of Cytotoxic Properties of a Cyclopamine Glucuronide Prodrug in Rat Glioblastoma Cells and Tumors. Journal of Molecular Neuroscience, 2015, 55, 51-61.	2.3	18
26	A dendritic β-galactosidase-responsive folate–monomethylauristatin E conjugate. Chemical Communications, 2015, 51, 15792-15795.	4.1	15
27	Selective Release of a Cyclopamine Glucuronide Prodrug toward Stem-like Cancer Cell Inhibition in Glioblastoma. Molecular Cancer Therapeutics, 2014, 13, 2159-2169.	4.1	18
28	β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: An update. European Journal of Medicinal Chemistry, 2014, 74, 302-313.	5.5	86
29	Oxidative decarboxylation of diclofenac by manganese oxide bed filter. Water Research, 2013, 47, 5400-5408.	11.3	61
30	An enzyme-responsive system programmed for the double release of bioactive molecules through an intracellular chemical amplification process. Organic and Biomolecular Chemistry, 2013, 11, 7129.	2.8	19
31	A galactosidase-responsive doxorubicin-folate conjugate for selective targeting of acute myelogenous leukemia blasts. Leukemia Research, 2013, 37, 948-955.	0.8	15
32	Synthesis and biological evaluations of a monomethylauristatin E glucuronide prodrug for selective cancer chemotherapy. European Journal of Medicinal Chemistry, 2013, 67, 75-80.	5.5	23
33	Innentitelbild: The First Generation of β-Galactosidase-Responsive Prodrugs Designed for the Selective Treatment of Solid Tumors in Prodrug Monotherapy (Angew. Chem. 46/2012). Angewandte Chemie, 2012, 124, 11556-11556.	2.0	0
34	A self-immolative dendritic glucuronide prodrug of doxorubicin. MedChemComm, 2012, 3, 68-70.	3.4	37
35	Second generation specific-enzyme-activated rotaxane propeptides. Chemical Communications, 2012, 48, 2083.	4.1	50
36	The First Generation of βâ€Galactosidaseâ€Responsive Prodrugs Designed for the Selective Treatment of Solid Tumors in Prodrug Monotherapy. Angewandte Chemie - International Edition, 2012, 51, 11606-11610.	13.8	89

Sébastien Papot

#	Article	IF	CITATIONS
37	Synthesis and Antitumor Efficacy of a β-Glucuronidase-Responsive Albumin-Binding Prodrug of Doxorubicin. Journal of Medicinal Chemistry, 2012, 55, 4516-4520.	6.4	64
38	A new cyclopamine glucuronide prodrug with improved kinetics of drug release. Organic and Biomolecular Chemistry, 2011, 9, 8459.	2.8	25
39	A Galactosidaseâ€Responsive "Trojan Horse―for the Selective Targeting of Folate Receptorâ€Positive Tumor Cells. ChemMedChem, 2011, 6, 1006-1010.	3.2	24
40	A Heterodimeric Glucuronide Prodrug for Cancer Tritherapy: the Double Role of the Chemical Amplifier. ChemMedChem, 2011, 6, 2137-2141.	3.2	25
41	Inside Cover: A Heterodimeric Glucuronide Prodrug for Cancer Tritherapy: the Double Role of the Chemical Amplifier (ChemMedChem 12/2011). ChemMedChem, 2011, 6, 2114-2114.	3.2	0
42	Dietary docosahexaenoic acid proposed to sensitize breast tumors to locally delivered drug. Clinical Lipidology, 2010, 5, 233-243.	0.4	5
43	Study of a cyclopamine glucuronide prodrug for the selective chemotherapy of glioblastoma. European Journal of Medicinal Chemistry, 2010, 45, 1678-1682.	5.5	15
44	Rotaxaneâ€Based Propeptides: Protection and Enzymatic Release of a Bioactive Pentapeptide. Angewandte Chemie - International Edition, 2009, 48, 6443-6447.	13.8	129
45	Cyanuric chloride: an efficient reagent for the Lossen rearrangement. Tetrahedron Letters, 2009, 50, 6800-6802.	1.4	47
46	Synthesis and biological evaluation of glucuronide prodrugs of the histone deacetylase inhibitor Cl-994 for application in selective cancer chemotherapy. Bioorganic and Medicinal Chemistry, 2008, 16, 8109-8116.	3.0	37
47	First O-Clycosylation of Hydroxamic Acids. Journal of Organic Chemistry, 2007, 72, 4262-4264.	3.2	39
48	Synthesis and biological evaluation of the suberoylanilide hydroxamic acid (SAHA) β-glucuronide and β-galactoside for application in selective prodrug chemotherapy. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 983-986.	2.2	39
49	A new simple and convenient method for the synthesis of substituted 2,6,9-trioxabicyclo[3.3.1]-nona-3,7-dienes from arylmalondialdehydes. Tetrahedron Letters, 2006, 47, 5961-5964.	1.4	7
50	Synthesis and cytotoxic activity of a glucuronylated prodrug of nornitrogen mustard. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1835-1837.	2.2	12
51	A new spacer group derived from arylmalonaldehydes for glucuronylated prodrugs. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2545-2548.	2.2	18